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1. Introduction. An arrangement of hyperplanes is a finite col-
lection of C-linear subspaces of dimension (l − 1) in Cl. For such an
arrangement A, there is a natural projective arrangement A∗ of hyper-
planes in CPl−1 associated to it. Let M(A) = Cl − ∪{H : H ∈ A}
and M(A∗) = CPl−1 − ∪{H∗ : H∗ ∈ A∗}. Then it is clear that
M(A) = M(A∗) × C∗. The central problem in the theory of arrange-
ments is to find a connection between the topology or differentiable
structure of M(A), respectively M(A∗), and the combinatorial geome-
try of A, respectively A∗.

More specifically, we would like to know the homotopy properties
of M(A) and how these properties relate to various other well-known
properties of arrangements. Many people have asked the following
questions. Precisely when is M(A) a K(π, 1) space?

In [2], Brieskorn considers the Coxeter group W acting on Rl. W
also acts as a reflection group in Cl. Let A = A(W ) be its reflection ar-
rangement. Brieskorn conjectured that A(W ) is a K(π, 1) arrangement
for all Coxeter groups W . He proved this for some of the groups by
representing M as the total space of a sequence of fibrations. Deligne
[3] settled the question by proving that the complement of complexi-
fication of a real simplicial arrangement is K(π, 1). This result proves
Brieskorn’s conjecture because the arrangement of a Coxeter group is
simplicial. Recently, Jambu and Terao [4] introduced the property of
supersolvability of an arrangement. This property is combinatorial in
nature, that is, it depends only on the pattern of intersection of the hy-
perplanes or equivalently on the lattice associated to the arrangement.
It turns out that complement M(A) of a supersolvable arrangement is
the total space of a fiber bundle in which the base and fiber are K(π, 1)
spaces. The long exact homotopy sequence of the bundle shows that
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