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VARIATIONAL METHOD WITH
APPLICATION TO CONVOLUTION EQUATIONS

DANIEL GOELEVEN

ABSTRACT. The aim of this paper is to solve the convo-
lution equation k ∗ u2 = |u| for k subject to the conditions

k ∈ L3/2(R), k(x) ≥ 0, k(x) = k(−x) and k symmetrically
decreasing. By using a result of the Ljusternik-Schnirelman
theory on C1-manifold due to A. Szulkin we improve some
recent results of J.B. Baillon and M. Théra.

1. Introduction. Recently, J.B. Baillon and M. Théra [1] intro-
duced a notion of self-adjoint nonlinear operator T with respect to
a duality mapping Jθ. Using the properties of such a mapping they
studied the optimization problem

(P) max{〈Tu, Jθu〉 : u ∈ X, ||u|| = 1},

where X is a reflexive real Banach space equipped with a sufficiently
smooth norm.

In their papers [1, 2, 12], they showed that problem (P) was very
useful to obtain solutions of some convolution equations such as the
following:

(E) k ∗ u2 = u, u ∈ L3(R),

where k ∈ L3/2(R)∩L3(R) is assumed to be symmetrically decreasing,
even and positive.

In this paper we use a recent result of the Ljusternik-Schnirelman
theory on C1-manifold [10] due to A. Szulkin to find critical points of
the norm || · || on the Banach manifold M := {u ∈ X : 〈Tu, Jθu〉 = 1}.
By using the Lagrange multiplier theorem we prove that our approach
can also be used to find solutions of convolution equations and of some
set-valued integral equations.
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