JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS Volume 5, Number 3, Summer 1993

PSEUDOSPECTRA OF WIENER-HOPF INTEGRAL OPERATORS AND CONSTANT-COEFFICIENT DIFFERENTIAL OPERATORS

SATISH C. REDDY

ABSTRACT. A number $z \in \mathbf{C}$ is in the ε -pseudospectrum of a linear operator A if $||(zI - A)^{-1}|| \geq \varepsilon^{-1}$. In this paper, we investigate the ε -pseudospectra of Volterra Wiener-Hopf integral operators and constant-coefficient differential operators with boundary conditions at one endpoint for the interval [0, b]. We show that although the spectra of these operators are not continuous in the limit $b \to \infty$, the ε pseudospectra are continuous as $b \to \infty$ for all $\varepsilon > 0$. These results are an extension of previous work on the pseudospectra of Toeplitz matrices.

1. Introduction. Let \mathcal{H} be a Hilbert space with inner product (\cdot, \cdot) and norm $||\cdot||$. Let $T : \mathcal{H} \to \mathcal{H}$ be a closed linear operator with domain $\mathcal{D}(T)$, spectrum $\Lambda(T)$, and resolvent set $\rho(T)$ [9]. For each $\varepsilon \geq 0$, the ε -pseudospectrum of T, which we denote by $\Lambda_{\varepsilon}(T)$, can be defined in the following manner [21, 22]:

Definition. For each $\varepsilon \geq 0$, a number $z \in \mathbf{C}$ is in the ε -pseudospectrum of T if

(1.1)
$$z \in \{\lambda \in \rho(T) : ||(\lambda I - T)^{-1}|| \ge \varepsilon^{-1}\} \cup \Lambda(T).$$

This definition is essentially equivalent to that for the set of ε approximate eigenvalues introduced by Landau [11]. Similar sets have also been considered by other researchers; see [21, 22] for a discussion.

As the definition shows, the sets $\Lambda_{\varepsilon}(T)$ are nested and $\Lambda_0(T)$ is the spectrum. Pseudospectra were introduced by Trefethen [20] to analyze the behavior of *non-normal* matrices. A normal matrix satisfies $A^+A = AA^+$, where A^+ is the adjoint, and has orthogonal eigenfunctions. The ε -pseudospectrum of a normal matrix is simply the union of the closed

Received by the editors on February 1, 1993 and in revised form on May 17, 1993.

Copyright ©1993 Rocky Mountain Mathematics Consortium