JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS Volume 4, Number 2, Spring 1992

A QUADRATURE METHOD FOR CAUCHY INTEGRAL EQUATIONS WITH WEAKLY SINGULAR PERTURBATION KERNEL

GIUSEPPE MASTROIANNI AND SIEGFRIED PRÖSSDORF

ABSTRACT. The authors study the mean weighted convergence of the quadrature method for solving integral equations over the arc (-1, 1) with Cauchy kernel and with a perturbation kernel not necessarily regular. Error estimates in uniform norm are also given.

1. Introduction. Many problems in aerodynamics and elasticity lead to a singular integral equation with Cauchy kernel of the form

(1.1)
$$a(x)u(x) + \frac{b(x)}{\pi} \int_{-1}^{1} \frac{u(t)}{t-x} dt + \int_{-1}^{1} k(x,t)u(t) dt = f(x)$$

on the interval (-1, 1) (see, e.g., [1, 16, 19]). The first integral in (1.1) is to be interpreted as the Cauchy principal value. Hereby a, band f are given Hölder continuous functions, and k is a given smooth or weakly singular kernel function.

The problem we are interested in is to find an approximation to the unknown solution u by using projection methods (like collocation or Galerkin schemes) or quadrature procedures with orthogonal polynomials as trial functions. There is already a considerable literature on this subject in the case of regular kernel k (see, e.g., the surveys [9,6-8, 12, 22, 23, 13-15, 24] and the references given by the same authors). In most of these papers the following strategy is employed. For given functions a and b, one introduces two sets of orthogonal polynomials which are denoted by $\{p_n\}$ and $\{q_n\}$, where $Dp_n = q_{n-\chi}$ with D being the dominant part of Equation (1.1) and χ the index of D (see Section 2). For a given value of n, we use Gauss-type quadrature rules based on the zeros of p_n and collocate at the zeros of $q_{n-\chi}$. In

Received by the editors on June 21, 1991. This paper is based upon work supported by the Italian Research Council (both authors) and by the Ministero dell'Università e della Ricerca Scientifica e Tecnologica (first author).

Copyright ©1992 Rocky Mountain Mathematics Consortium