JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS Volume 2, Number 3, Summer 1990

REGULARITY PROPERTIES OF SOLUTIONS OF LINEAR INTEGRODIFFERENTIAL EQUATIONS WITH SINGULAR KERNELS

HANS ENGLER

Dedicated to John A. Nohel for his sixty-fifth birthday

1. Introduction. Let **H** be a Hilbert space with norm $|\cdot|$ and inner product $\langle \cdot, \cdot \rangle$. Let *A* be a possibly unbounded linear operator in **H**, and let $a : [0, \infty) \to \mathbf{R}$ be a given locally integrable kernel function. In this note we study properties of solutions of the abstract linear integrodifferential equation

(1)
$$u'(t) + a * Au(t) = 0, \quad 0 < t < T,$$

in **H**. Here the usual convolution notation is employed: $f * g(t) = \int_0^t f(t-s)g(s) ds$, if one of the two functions is scalar-valued and the other one is vector-valued.

We want to consider *mild solutions* of (1), i.e., continuous functions $u(\cdot)$ for which $1 * a * u(t) \in D(A)$ for all $0 \le t \le T$ and for which the integrated version

(2)
$$u(t) + A(1 * a * u(t)) = u(0)$$

of (1) holds for all $t \in [0, T]$. The goal of this note is to give conditions on the kernel function *a* under which such mild solutions satisfy an estimate of the form

$$|Au(t)| \le \frac{C}{t^M} |u(0)|$$

for a suitable power M. It will be proved that such an estimate is always true if the derivative a' is integrable and behaves like $-t^{-2\alpha}$ near zero, and that in this case $M = 1/\alpha$ is a suitable exponent.

The following assumptions will be used. The assumptions for the kernel function $a(\cdot)$ are to hold on any finite interval [0, T]. A subscript T denotes that the corresponding quantity depends on T.

Supported by the National Science Foundation under grant #DMS-8805192 Copyright ©1990 Rocky Mountain Mathematics Consortium