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SOME RESULTS ON NONLINEAR HEAT EQUATIONS
FOR MATERIALS OF FADING MEMORY TYPE

PH. CLÉMENT AND G. DA PRATO

1. Introduction. In this paper we consider a model for the heat
conduction for a material covering an n-dimensional bounded set Ω
with boundary ∂Ω, n = 1, 2, 3.
(1.1){

d
dt

(
b0u(t, x) +

∫ t

0
β(t− s)u(s, x) ds

)
= c0Δu(t, x), t > 0, x ∈ Ω,

u(0, x) = x, x ∈ Ω,

where u(t, x) is the temperature of the point x at time t (we assume
that the temperature is 0 for x ∈ ∂Ω), b0 is the specific heat and
c0 the thermal conductivity. We assume that the specific heat has a
term of fading memory type

∫ t

0
β(t− s)u(s, x) ds, whereas the thermal

conductivity is constant. Concerning the kernel β we assume only that
it is locally integrable in [0,∞[; this will allow us to consider kernels as
β(t) = e−ωttα−1, ω ≥ 0, α ∈ ]0, 1[.

Model (1.1) (including also a memory term for the thermal conduc-
tivity) has been introduced in [7] and studied in [1] and [5].

We write problem (1.1) in abstract form in the Banach space X =
C(Ω),

(1.2)
{

d
dt (u(t) + (β ∗ u)(t)) = Au(t), t > 0,
u(0) = x,

where u(t) = u(t, ·) and A is the realization in C(Ω) of the Laplace
operator Δ with Dirichlet boundary conditions.

In order to study (1.2), we assume that A generates an analytic
semigroup and that β is Laplace transformable with Laplace transform
β̂(λ) analytic in a sector Sω,θ = {λ ∈ C \{0} : | arg(λ − ω)| < θ} with
ω ∈ R and θ ∈ ]π/2, π[. Then the Laplace transform û(λ) of u is given
formally by

(1.3) û(λ) := F (λ)x = R(λ+ λβ̂(λ), A)x.
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