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ABSTRACT. Estimates for the measure of noncompactness
of integral operators of vector functions are proved. In par-
ticular, for linear integral operators of vector functions with
nonmeasurable kernels a Mönch type compactness result is
obtained.

1. Introduction. For scalar functions, it is well known that the
Urysohn integral operator

(1) Ax(t):=
∫ 1

0

g(t, s, x(s)) ds, t ∈ [0, 1]

is usually compact. In particular, A is compact in the space C([0, 1])
under mild continuity assumptions on g. This is a consequence of
the Arzelá-Ascoli theorem, because the image of bounded sets has
equicontinuous norm (provided that, e.g., g is continuous).

Moreover, if g is a Carathéodory function, i.e., g( · , · , u) is (strongly)
(Bochner) measurable for each u, and g(t, s, · ) is continuous for almost
all (t, s) ∈ [0, 1]2, then, under some growth assumptions on g, the
operator A maps compactly into the spaces Lp([0, 1]), 1 ≤ p < ∞, or,
more generally, into regular ideal spaces. These are classical results
of Krasnosel’skĭı[9] and Zabrĕıko, see e.g., [9, 10, 28], and it is also
possible to weaken the growth conditions slightly [16, 20].

We are interested in the case that the functions x and g assume values
in Banach (or at least normed) spaces U and V , respectively, where the
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