ALMOST AUTOMORPHIC MILD SOLUTIONS TO SOME SEMI-LINEAR ABSTRACT DIFFERENTIAL EQUATIONS WITH DEVIATED ARGUMENT

CIPRIAN G. GAL

ABSTRACT. In this paper we consider the semi-linear differential equation with deviated argument $x'(t) = Ax(t) + f(t,x(t),x[\alpha(x(t),t]]),\ t\in \mathbf{R},$ in a Banach space $(X,\|\cdot\|)$, where A is the infinitesimal generator of a C_0 -semigroup satisfying some conditions of exponential stability. Under suitable conditions on the functions f and α we prove the existence and uniqueness of an almost automorphic mild solution to the equation.

1. Introduction. Everywhere in the paper, $(X, \|\cdot\|)$ will be a Banach space.

The concept of almost automorphy is a generalization of almost periodicity and it has been introduced in the literature by Bochner, as follows.

Definition 1.1. We say that a continuous function $f: \mathbf{R} \to X$, is almost automorphic, if every sequence of real numbers $(r_n)_n$, contains a subsequence $(s_n)_n$, such that for each $t \in \mathbf{R}$, there exists $g(t) \in X$ with the property

$$\lim_{n \to +\infty} d(g(t), f(t+s_n)) = \lim_{n \to +\infty} d(g(t-s_n), f(t)) = 0.$$

(The above convergence on \mathbf{R} is pointwise.) The set of all almost automorphic functions with values in X is denoted by AA(X).

In a very recent paper [3] the existence and uniqueness of almost automorphic mild solutions with values in Banach spaces, for the

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 43A60, 34G10. Key words and phrases. Almost automorphic, mild solutions, semigroups of linear operators, semi-linear differential equations with deviated arguments, Banach

spaces. Received by the editors on March 4, 2005 and in revised form on August 25, 2005.