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CONVERGENCE THEOREMS AND MEASURES
OF NONCOMPACTNESS FOR NONCOMPACT
URYSOHN OPERATORS IN IDEAL SPACES

MARTIN VÄTH

ABSTRACT. A result about the uniform convergence of se-
quences of Urysohn operators in ideal spaces is proved when
the limit operator is too singular to be compact. An esti-
mate about the measure of noncompactness of such (weakly)
singular Urysohn operators is obtained.

1. Introduction. Let S and T be σ-finite measure spaces, M a
metric space, and V a Banach space. Given some function f : T × S ×
M → V , we are interested in the corresponding Urysohn operator

A(f)x(t) :=
∫

S

f(t, s, x(s)) ds, t ∈ T,

where the integral is understood in the Lebesgue-Bochner sense. If
M = V = R and f is a so-called Carathéodory function, it is known
that under some growth assumptions on f the operator A(f) is compact
in Lp-spaces or, more generally, in ideal spaces. These are classical
results of Krasnosel’skĭı [4] and Zabrĕıko, see e.g., [5, 14]. It is also
possible to weaken the growth conditions slightly [6, 9].

However, there are situations where f does not satisfy these growth
assumptions but where one nevertheless would like to say something
about the compactness of A(f); if A(f) is not compact, one would at
least like to find good estimates for the measure of noncompactness of
its image. If such a measure is sufficiently small, one can still apply,
e.g., degree theory [3] (and in the linear case, the Fredholm alternative
holds [1]).
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