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ABSTRACT. We consider the solvability of linear integral
equations on the real line, in operator form (A — K)¢ = 1,
where A € C and K is an integral operator. We impose
conditions on the kernel, k, of K which ensure that K is
bounded as an operator on LP(R), 1 < p < oo, and on
BC(R). We establish conditions on families of operators,
{Ky : k € W}, which ensure that if A # 0 and \¢p = Ky¢
has only the trivial solution in BC(R), for all k € W, then
for 1 < p < 00, (A = K)¢ = 1 has exactly one solution
¢ € LP(R) for every k € W and ¢ € LP(R). The results
of considerable generality apply in particular to kernels of
the form k(s,t) = k(s — t)z(t) and k(s,t) = k(s — t)2(s,t),
where x,% € LY(R), z € L®(R), 2 € BC(R?) and &(s) =
O(s7?) as |s| — oo, for some b > 1. As a significant
application we consider the problem of acoustic scattering
by a sound-soft, unbounded one-dimensional rough surface
which we reformulate as a second kind boundary integral
equation. Combining the general results of earlier sections
with a uniqueness result for the boundary value problem,
we establish that the integral equation is well-posed as an
equation on LP(R), 1 < p < oo, and on weighted spaces of
continuous functions.

1. Introduction. We consider in this paper integral equations of
the form

—+o0
(1.1) A6(s) —[ k(s,)6(t) dt = v(s), s€R,

where A € C, the functions k : R? — C and 1) are assumed known and
¢ is the solution to be determined. Define the integral operator K by

+oo
(1.2) Kiy(s) = / k(s,t)y(t)dt, seR.
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