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ON INTEGRAL EQUATIONS ARISING
IN THE FIRST-PASSAGE PROBLEM

FOR BROWNIAN MOTION

GORAN PESKIR

ABSTRACT. Let (Bt)t≥0 be a standard Brownian motion
started at zero, let g : (0,∞) → R be a continuous function
satisfying g(0+) ≥ 0, let

τ = inf {t > 0 | Bt ≥ g(t)}

be the first-passage time of B over g, and let F denote the
distribution function of τ . Then the following system of
integral equations is satisfied:
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for t > 0 and n = −1, 0, 1 . . . , where Hn(x) =
∫ ∞

x
Hn−1(z) dz

for n ≥ 0 and H−1(x) = ϕ(x) = (1/
√

2π )e−x2/2 is the
standard normal density. These equations are derived from a
single ‘master equation’ which may be viewed as a Chapman-
Kolmogorov equation of Volterra type. The initial idea in the
derivation of the master equation goes back to Schrödinger
[23].

1. Introduction. Let (Bt)t≥0 be a standard Brownian motion
started at zero, let g : (0,∞) → R be a continuous function satisfying
g(0+) ≥ 0, let

(1.1) τ = inf {t > 0 | Bt ≥ g(t)}
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