JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS Volume 12, Number 3, Fall 2000

POSITIVE SOLUTIONS OF SINGULAR INTEGRAL EQUATIONS

MARIA MEEHAN AND DONAL O'REGAN

ABSTRACT. Continuous, positive solutions of singular integral equations of the form $y(t) = h(t) + \int_0^T k(t,s) [f(y(s)) + g(y(s))] ds$ are sought. Here $f : [0, \infty) \to [0, \infty)$ is continuous and nondecreasing while $g : (0, \infty) \to [0, \infty)$ is continuous, nonincreasing and possibly singular. The case when $T = \infty$ is also discussed.

1. Introduction. In the first half of this paper, Schauder's fixed point theorem is used to obtain the existence of continuous, positive solutions of

(1.1)
$$y(t) = h(t) + \int_0^T k(t,s)[f(y(s)) + g(y(s))] ds, \quad t \in [0,T].$$

It is assumed that $f : [0, \infty) \to [0, \infty)$ is continuous and nondecreasing, while $g : (0, \infty) \to [0, \infty)$ is continuous, nonincreasing and possibly singular, that is, the possibility of g(0) being undefined is allowed. In Section 2, by placing appropriate conditions on h, k, f and g, we use Schauder's fixed point theorem to prove the existence of a solution $y \in C[0,T]$ such that $0 < \beta < y(t) < \alpha, t \in [0,T]$ for some $0 < \beta < \alpha$. In addition a special case of this result, which occurs when $h \in C[0,T]$ is such that $h(t) > 0, t \in [0,T]$, is stated for completeness.

In Section 3 we extend the results of Section 2 and consider the possibly singular equation

(1.2)
$$y(t) = h(t) + \int_0^\infty k(t,s)[f(y(s)) + g(y(s))] ds, \quad t \in [0,\infty).$$

Schauder's fixed point theorem and the Schauder-Tychonoff fixed point theorem are used to establish the existence of a positive solution $y \in C_l[0,\infty)$ and $y \in BC[0,\infty) \subset C[0,\infty)$ respectively of (1.2). (Here

Received by the editors on September 1, 1999, and in revised form on March 6, 2000.

Copyright ©2000 Rocky Mountain Mathematics Consortium