A DENSITY CONDITION FOR INTERPOLATION ON THE HEISENBERG GROUP

BRADLEY CURREY AND AZITA MAYELI

ABSTRACT. We consider left invariant multiplicity free subspaces of $L^2(N)$ where N is the Heisenberg group. We prove a necessary and sufficient density condition in order that such subspaces possess the interpolation property with respect to a class of discrete subsets of N that includes the integer lattice. We exhibit a concrete example of a subspace that has interpolation for the integer lattice, and we also prove a necessary and sufficient condition for shift invariant subspaces to possess a singly-generated orthonormal basis of translates.

1. Introduction. Let \mathcal{H} be a Hilbert space of continuous functions on a topological space X for which point evaluation $f \mapsto f(x)$ is continuous, let Γ be a countable discrete subset of X, and let p be the restriction mapping $f \mapsto f|_{\Gamma}$ on \mathcal{H} . We say that (\mathcal{H}, Γ) is a (Parseval) sampling pair if p is a constant multiple of an isometry of \mathcal{H} into $\ell^2(\Gamma)$, and if p is surjective then we say that (\mathcal{H}, Γ) has the interpolation property. In the present work we are interested in sufficient conditions in order that a pair (\mathcal{H}, Γ) has the interpolation property, where \mathcal{H} is a Hilbert space of functions on the Heisenberg group. Sampling has been studied in related settings in [2, 3, 5]. In [5] the author obtains sampling sets for Paley-Wiener functions on stratified Lie groups, while some of the results in [2] provide a characterization of Parseval sampling pairs for left invariant subspaces of $L^{2}(G)$ where G is any locally compact unimodular Type I group, in terms of the notion of admissibility. The work of [3] also provides quite general sufficient conditions for sampling and includes ideas from both of the preceding articles. The statement made in [2, page 47, also Theorem 6.4 (ii)] that, on the Heisenberg group, left-invariant sampling spaces associated to lattices never have the interpolation property, is particularly pertinent to the present work.

²⁰¹⁰ AMS Mathematics subject classification. Primary 42C15, 92A20, 43A80. Keywords and phrases. Heisenberg group, Gabor frame, multiplicity free sub-

Keywords and phrases. Heisenberg group, Gabor frame, multiplicity free subspaces, sampling spaces, interpolation property. Received by the editors on September 29, 2009, and in revised form on Novem-

Received by the editors on September 29, 2009, and in revised form on November 29, 2009.

 $^{{\}rm DOI:} 10.1216/{\rm RMJ} - 2012 - 42 - 4 - 1135 \quad {\rm Copyright} \\ \textcircled{O}2012 \\ {\rm Rocky} \\ {\rm Mountain} \\ {\rm Mathematics} \\ {\rm Consortium} \\ {$