ONE HALF OF A MAXIMAL EMBEDDING DIMENSION NUMERICAL SEMIGROUP

J.C. ROSALES AND P. VASCO

Abstract

Let S be a numerical semigroup, and let p be a positive integer. Then $S / p=\{x \in \mathbf{N} \mid p x \in S\}$ is also a numerical semigroup and, when $p=2$, we say that $S / 2$ is the one half of the numerical semigroup S. We characterize the numerical semigroups that are one half of a numerical semigroup with maximal embedding dimension. This characterization allows us to algorithmically determine, whether or not a given numerical semigroup is one half of a numerical semigroup with maximal embedding dimension.

1. Introduction. A numerical semigroup is a subset of \mathbf{N} (here \mathbf{N} denotes the set of nonnegative integers) that is closed under addition, contains the zero element and has finite complement in \mathbf{N}. Given $A \subseteq \mathbf{N}$, we will denote by $\langle A\rangle$ the submonoid of $(\mathbf{N},+)$ generated by A, that is,

$$
\begin{aligned}
\langle A\rangle=\left\{\lambda_{1} a_{1}+\cdots+\right. & \lambda_{n} a_{n} \\
& \left.n \in \mathbf{N} \backslash\{0\}, \lambda_{1}, \ldots, \lambda_{n} \in \mathbf{N}, a_{1}, \ldots, a_{n} \in A\right\} .
\end{aligned}
$$

If $S=\langle A\rangle$, then we say that A is a system of generators of S. We say that A is a minimal system of generators of S if no proper subset of A generates S. It is well known (see for instance [10]) that every numerical semigroup admits a unique minimal system of generators, which has finitely many elements.

If S is a numerical semigroup and $\left\{n_{1}<n_{2}<\cdots<n_{p}\right\}$ is its minimal system of generators, then n_{1} is called the multiplicity of S and we denote it by $\mathrm{m}(S)$. The positive integer p is the embedding dimension of S, and we denote it by e(S) (see [3]). It is easy to prove

[^0]
[^0]: 2010 AMS Mathematics subject classification. Primary 20M14, 13H10.
 Keywords and phrases. Numerical semigroup, maximal embedding dimension, multiplicity, Frobenius number, pseudo-Frobenius numbers.

 The first author was supported by MTM2007-62346, MEC (Spain) and FEDER funds.

 Received by the editors on August 24, 2009, and in revised form on November 9, 2009.

