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THE FIRST COHOMOLOGY GROUP OF
MODULE EXTENSION BANACH ALGEBRAS

A.R. MEDGHALCHI AND H. POURMAHMOOD-AGHABABA

ABSTRACT. Let A be a Banach algebra and X a Banach
A-bimodule. Then § = A & X, the lj-direct sum of A
and X becomes a module extension Banach algebra when
equipped with the algebra product (a,z).(a’, ') = (aa’, az’ +
za'). In this paper we compute the first cohomology group
H1(S,S) for module extension Banach algebras S. Also we
obtain results on n-weak amenability of commutative module
extension Banach algebras. We have shown that there are
many different examples of non-n-weakly amenable Banach
algebras.

1. Introduction. Let A be a Banach algebra and X a Banach
A-bimodule. A derivation from A into X is a bounded linear map
satisfying

D(ab) = a.(Db) + (Da).b (a,bec A).

For each x € X we denote by ad, the derivation D(a) = a.z — z.a,
for all @ € A, called an inner derivation. We denote by Z!(A, X) the
space of all derivations from A into X, and by B'(A, X) the space of
all inner derivations from A into X. The first cohomology group of
A with coefficients in X, denoted by H'(A, X), is the quotient space
ZY(A,X)/B'(A, X). This first cohomology group of a Banach algebra
gives vast information about the structure of A. If X is a Banach A-
bimodule, X* (the dual space of X) is an A-bimodule as usual. Let
n € N, the set of non-negative integers. A Banach algebra A is called
amenable if H1(A, X*) = 0 for every A-bimodule X. A Banach algebra
A is called n-weakly amenable (weakly amenable in case n = 1) if
H'(A, A1) = 0, where A is the n-th dual space of A and A(®) = A
(cf. [3]). In [5, 6] the authors have calculated the first cohomology
group of a class of Banach algebras which they called triangular Banach
algebras.
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