ON ℓ_{ψ} SPACES AND INFINITE ψ -DIRECT SUMS OF BANACH SPACE

THEODOSSIOS ZACHARIADES

ABSTRACT. In this paper, the sequence Banach spaces ℓ_{ψ} are defined for a class of convex functions ψ and properties of these spaces and their dual spaces are proved. It can be seen that some well-known sequence Banach spaces are spaces of this type. The ψ -direct sum of a sequence $(X_n)_{n\in\mathbb{N}}$ of Banach spaces is also defined. The modulus of convexity of this space is estimated in terms of the modulus of convexity of the spaces ℓ_{ψ} and $X_n, n=1,2,\ldots$ Based on this estimate, conditions are proved under which uniform convexity, uniform smoothness and uniform non-squareness are inherited by ψ -direct sums.

1. Introduction. A norm $\|\cdot\|$ on \mathbf{C}^2 is called absolute if $\|(z_1,z_2)\|=\|(|z_1|,|z_2|)\|$ for $(z_1,z_2)\in\mathbf{C}^2$ and is called normalized if $\|(1,0)\|=\|(0,1)\|=1$. For a continuous and convex function ψ on [0,1] satisfying $\psi(0)=\psi(1)=1$ and $\max\{1-s,s\}\leq\psi(s)\leq 1$ for every $0\leq s\leq 1$, Bonsall and Duncan $[\mathbf{3}]$ defined the norm

$$\|(z_1, z_2)\|_{\psi} = \begin{cases} (|z_1| + |z_2|)\psi(\frac{|z_2|}{|z_1| + |z_2|}) & \text{if } (z_1, z_2) \neq (0, 0) \\ 0 & \text{if } (z_1, z_2) = (0, 0) \end{cases}$$

on \mathbb{C}^2 , and they proved that a norm $\|\cdot\|$ on \mathbb{C}^2 is absolute and normalized if and only if there is a function ψ with the above properties such that $\|\cdot\| = \|\cdot\|_{\psi}$. ℓ_p norms are typical examples of such norms, but there are plenty non ℓ_p -type norms on \mathbb{C}^2 which are absolute and normalized.

For every ψ as above, Takahashi, Kato and Saito [19] introduced the ψ -direct sum $X \bigoplus_{\psi} Y$ of Banach spaces X and Y equipped with

²⁰¹⁰ AMS Mathematics subject classification. Primary 46B20, 46B99, Secondary 26B25, 52A41.

Keywords and phrases. Absolute norm, convex function, direct sum of Banach spaces, uniform convex space, uniform smooth space, uniform non-square space. Received by the editors on June 1, 2008, and in revised form on September 26,

DOI:10.1216/RMJ-2011-41-3-971 Copyright © 2011 Rocky Mountain Mathematics Consortium