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SURJECTIVE LINEAR MAPS PRESERVING
CERTAIN SPECTRAL RADII

M. BENDAOUD AND M. SARIH

ABSTRACT. Let £(H) denote the algebra of all bounded
linear operators on an infinite dimensional complex Hilbert
space H. In this paper, we prove that a surjective linear
map ¢ from L(H) into itself preserves the spectral radius
r1(.) if and only if ¢ is an automorphism multiplied by a
unimodular scalar. We also consider the case when H is
a finite dimensional Hilbert space and prove that a linear
map ¢ from M, (C) into itself preserves the spectral radius
r1(.) if and only if ¢ is either an automorphism or an anti-
automorphism multiplied by a unimodular scalar. Finally,
we use this result to show that a linear map ¢ from M, (C)
into itself preserves the inner local spectral radius at nonzero
fixed vector zg € C" if and only if there exist a unimodular
scalar o € C and an invertible matrix A € M, (C) such that
A(zg) = zp and ¢(T) = aATA™! for all T € M, (C).

1. Introduction. Let X be a complex Banach space, and let
L(X) denote the algebra of all bounded linear operators on X. For
an operator T € L(X), we denote the spectrum by o(T) and the
approximate point spectrum by o,,(T). We also denote as usual
the spectral radius of T by r(T) := max{|A\| : A € o(T)} which
coincides, by Gelfand’s formula for the spectral radius, with the limit
of the convergent sequence (|77 '/"),. The minimum modulus of T
is m(T) := inf{||Tz|| : ||z|| = 1}, and is positive precisely when T is
injective and has a closed range. Note that the sequence (m(T™)Y/"),
converges and its limit, denoted by r1(T"), coincides with its supremum.
In [12], Makai and Zemdnek proved, in fact, that r1(7") is nothing but
the minimum modulus of o4, (T').

The local resolvent of an operator T € £(X) at a point z € X, pr(z),
is the set of all A € C for which there exists an open neighborhood U)
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