BOUNDARY VALUE PROBLEMS FOR SINGULAR ELLIPTIC EQUATIONS

NGUYEN HOANG LOC AND KLAUS SCHMITT

To the memory of Lloyd K. Jackson

ABSTRACT. We study the existence of positive solutions to singular elliptic boundary value problems involving the p-Laplace operator. We establish a sub-supersolution theorem and use an eigenfunction of the p-Laplacian to construct suband super-solutions. Our assumptions on the singular term are more relaxed than in some previous papers, even for the case p=2, as we allow for non-monotone singular terms with blowup controlled by a power. We also allow for a parameter dependent term and study how its growth affects our existence

1. Introduction. Let Ω be a smooth bounded domain in \mathbb{R}^N , $N \geq 1$, and p > 1. We are interested in the following singular elliptic problem

(1.1)
$$\begin{cases} -\Delta_p u = ag(u) + \lambda h(u) & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

where

$$\Delta_p u = \operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$$

is the p-Laplace operator; λ is a nonnegative parameter;

$$a:\Omega\longrightarrow [1,\infty)$$

is in $L^{\infty}(\Omega)$;

$$g:(0,\infty)\longrightarrow \mathbf{R}$$

is continuous and satisfies

$$\lim_{s\to 0^+}g(s)=\infty;$$

²⁰¹⁰ AMS Mathematics subject classification. Primary 35B45, 35J60, 35J65. Keywords and phrases. Singular elliptic problems, sub-supersolutions, maximum principle.

Received by the editors on May 25, 2010.