SOME REMARKS ON SPECIAL SUBORDINATORS

RENMING SONG AND ZORAN VONDRAČEK

ABSTRACT. A subordinator is called special if the restriction of its potential measure to $(0, \infty)$ has a decreasing density with respect to the Lebesgue measure. In this note we investigate what type of measures μ on $(0,\infty)$ can arise as Lévy measures of special subordinators and what type of functions $u:(0,\infty)\to[0,\infty)$ can arise as potential densities of special subordinators. As an application of the main result, we give examples of potential densities of subordinators which are constant to the right of a positive number.

1. Introduction. A function $\phi:(0,\infty)\to(0,\infty)$ is called a Bernstein function if it admits a representation

(1.1)
$$\phi(\lambda) = a + b\lambda + \int_0^\infty (1 - e^{-\lambda x}) \,\mu(dx),$$

where $a \geq 0$ is the *killing term*, $b \geq 0$ the *drift* and μ a measure on $(0,\infty)$ satisfying $\int_0^\infty (x \wedge 1) \, \mu(dx) < \infty$, called the *Lévy measure*. By defining $\mu(\{\infty\}) = a$, the measure μ is extended to a measure on $(0, \infty]$. The function $\overline{\mu}(x) := \mu((x,\infty])$ on $(0,\infty)$ is called the *tail* of the Lévy measure. Using integration by parts, formula (1.1) becomes

(1.2)
$$\phi(\lambda) = b\lambda + \lambda \int_0^\infty e^{-\lambda x} \bar{\mu}(x) dx.$$

The function ϕ is called a special Bernstein function if the function $\psi:(0,\infty)\to(0,\infty)$ defined by $\psi(\lambda):=\lambda/\phi(\lambda)$ is again a Bernstein function. Let

(1.3)
$$\psi(\lambda) = \tilde{a} + \tilde{b}\lambda + \int_0^\infty (1 - e^{-\lambda x}) \nu(dx)$$

2010 AMS Mathematics subject classification. Primary 60G51, Secondary 60J45, 60J75.

Keywords and phrases. Subordinator, potential density, Lévy measure, Bern-

stein function, log-convex function.

The research of the first author is supported in part by a joint US-Croatia grant INT 0302167. The research of the second author is supported in part by MZOS

grant 037-0372790-2801 of the Republic of Croatia.

Received by the editors on March 14, 2007, and in revised form on August 2,

 ${\tt DOI:10.1216/RMJ-2010-40-1-321} \quad {\tt Copyright @ 2010 \ Rocky \ Mountain \ Mathematics \ Consortium}$