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BANACH-STEINHAUS TYPE THEOREMS
FOR STATISTICAL AND Z-CONVERGENCE
WITH APPLICATIONS TO MATRIX MAPS

ENNO KOLK

ABSTRACT. Let (An) be a sequence of bounded linear
operators from a Banach space X into a Banach space Y.
It is proved that if X has a countable fundamental set ®
and the ideal Z of subsets of N has property (APO), then
(Anz) is boundedly Z-convergent for each z € X if and
only if sup,, ||An|| < oo and (An¢) is Z-convergent for any
¢ € ®. This result is applied to characterize some sequence-
to-sequence transformations defined by infinite matrices of
bounded linear operators.

1. Introduction and auxiliary results. Let N = {1,2,...}, and
let X, Y be two Banach spaces over the field K of real or complex
numbers. A subset ® of X is called fundamental if the linear span of ®
is dense in X. By B(X,Y) we denote the space of all bounded linear
operators from X into Y. We write sup,,, limy,, >, U, and N,, instead

of sup,,en, My oo, 2 oneq, U2 and NS4, respectively.

Let A, € B(X,Y), n € N. A well-known principle of uniform
boundedness asserts that if sup,, ||A,z|| < oo for every € X, then
there exists a constant M > 0 such that

(1.1) |4, < M, neN.

By investigation of the convergence of various linear processes the
following corollary from this principle is useful (see, for example, [4,
page 248] or [9, page 173]).

Theorem 1 (Banach-Steinhaus). Let ® C X be a fundamental set.
The limit lim, A,z exists for any x € X if and only if (1.1) holds
and lim,, A,¢ exists for every ¢ € ®. Moreover, the limit operator
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