BANACH-STEINHAUS TYPE THEOREMS FOR STATISTICAL AND \mathcal{I} -CONVERGENCE WITH APPLICATIONS TO MATRIX MAPS

ENNO KOLK

ABSTRACT. Let (A_n) be a sequence of bounded linear operators from a Banach space X into a Banach space Y. It is proved that if X has a countable fundamental set Φ and the ideal $\mathcal I$ of subsets of $\mathbf N$ has property (APO), then $(A_n x)$ is boundedly $\mathcal I$ -convergent for each $x \in X$ if and only if $\sup_n \|A_n\| < \infty$ and $(A_n \phi)$ is $\mathcal I$ -convergent for any $\phi \in \Phi$. This result is applied to characterize some sequence-to-sequence transformations defined by infinite matrices of bounded linear operators.

1. Introduction and auxiliary results. Let $\mathbf{N} = \{1, 2, \dots\}$, and let X, Y be two Banach spaces over the field \mathbf{K} of real or complex numbers. A subset Φ of X is called fundamental if the linear span of Φ is dense in X. By B(X,Y) we denote the space of all bounded linear operators from X into Y. We write \sup_n , \lim_n , \sum_n , \cup_n and \cap_n instead of $\sup_{n\in\mathbf{N}}$, $\lim_{n\to\infty}$, $\sum_{n=1}^{\infty}$, $\bigcup_{n=1}^{\infty}$ and $\bigcap_{n=1}^{\infty}$, respectively.

Let $A_n \in B(X,Y)$, $n \in \mathbb{N}$. A well-known principle of uniform boundedness asserts that if $\sup_n ||A_n x|| < \infty$ for every $x \in X$, then there exists a constant M > 0 such that

$$||A_n|| \le M, \quad n \in \mathbf{N}.$$

By investigation of the convergence of various linear processes the following corollary from this principle is useful (see, for example, [4, page 248] or [9, page 173]).

Theorem 1 (Banach-Steinhaus). Let $\Phi \subset X$ be a fundamental set. The limit $\lim_n A_n x$ exists for any $x \in X$ if and only if (1.1) holds and $\lim_n A_n \phi$ exists for every $\phi \in \Phi$. Moreover, the limit operator

²⁰¹⁰ AMS $Mathematics\ subject\ classification.$ Primary 46B45, Secondary 47A05, 46B15, 40C05, 40H05.

Supported by Estonian Science Foundation grant 5376. Received by the editors on October 16, 2006 and accepted on November 16, 2009.

DOI:10.1216/RMJ-2010-40-1-279 Copyright © 2010 Rocky Mountain Mathematics Consortium