A DIRECT PROOF OF A THEOREM ON MONOTONICALLY NORMAL SPACES FOR GO-SPACES

ÇETIN VURAL

ABSTRACT. Let X be a GO-space. We give a direct proof of the following fact: If $\mathcal O$ is an open cover of X, then $\mathcal O$ has a σ -disjoint open, partial refinement $\mathcal V$ such that $X \setminus \cup \mathcal V$ is the union of a discrete family of stationary subsets of regular uncountable cardinals.

1. Introduction and terminology. We say that an open cover \mathcal{O} of a topological space X has the (\star) property, if \mathcal{O} has a σ -disjoint open partial refinement \mathcal{V} such that $X \setminus \cup \mathcal{V}$ is the union of a discrete family of closed subspaces which are homeomorphic to some stationary subset of a regular uncountable cardinal. A topological space X is said to have the (\star) property, if each open cover \mathcal{O} of X has the (\star) property.

In [1], Balogh and Rudin have proved that monotonically normal spaces have the (\star) property, and in [3] it was proved that any GO-space is monotonically normal. So, GO-spaces have the (\star) property. In this paper we give a direct and simple proof of this fact using "the method of coherent collections" described in [4].

A subset C of a linearly ordered set (X, \leq) is called *convex* if

$$\{x \in X : a \le x \le b\} \subseteq C$$

for each $a, b \in C$ with $a \leq b$. Let (X, \mathcal{T}) be a topological space and \leq a linear order on X. Recall that (X, \mathcal{T}, \leq) is called a *generalized ordered space* (or GO-space), if \mathcal{T} contains usual open interval topology on X and has a base consisting of convex subsets.

Let \mathcal{B} be a collection of subsets of X and $A \subseteq X$. Then we write

$$st(A,\mathcal{B}) = \bigcup \left\{ B \in \mathcal{B} : A \cap B \neq \varnothing \right\}.$$

²⁰⁰⁰ AMS $\it Mathematics subject classification.$ Primary 54F05, 54D20. $\it Keywords \ and \ phrases.$ GO-space, refinement, stationary set. Received by the editors on June 6, 2004, and in revised form on May 13, 2007.