COMPOSITION OPERATORS BETWEEN BLOCH-TYPE SPACES AND MÖBIUS INVARIANT \mathcal{Q}_K SPACES

JORDI PAU

ABSTRACT. A characterization of the boundedness and compactness of a composition operator $C_{\varphi}f=f\circ\varphi$ acting from the Bloch type spaces \mathcal{B}^{α} to the Möbius invariant spaces \mathcal{Q}_K is given. In particular, estimates for the essential norm of such an operator are obtained.

1. Introduction and main results. Let $\phi: \mathbf{D} \to \mathbf{D}$ be an analytic map of the unit disc $\mathbf{D} = \{z: |z| < 1\}$ into itself. The map ϕ induces a linear composition operator $C_{\phi}f = f \circ \phi$ on space $\mathcal{H}(\mathbf{D})$ of all analytic functions on the unit disc. A fundamental problem in the study of composition operators is to characterize in terms of the function theoretic properties of ϕ , the boundedness and compactness of restrictions of C_{ϕ} to various Banach spaces of analytic functions.

Recall that a bounded linear map T from a Banach space X into a Banach space Y is called compact (weakly compact) if it maps the closed unit ball of X onto a relatively compact (a relatively weakly compact) set in Y. The $essential\ norm$ of T is defined to be the distance to the compact operators, that is,

$$||T||_e = \inf\{||T - S|| : S \text{ is compact}\}.$$

Since $||T||_e = 0$ if and only if T is compact, estimates for $||T||_e$ give conditions for T to be compact.

For s > -1, consider the weighted Dirichlet space D_s of all analytic functions on the unit disc **D** for which

$$||f||_{D_s}^2 = \int_{\mathbf{D}} |f'(z)|^2 (1 - |z|^2)^s dA(z) < \infty.$$

²⁰⁰⁰ AMS Mathematics subject classification. Primary 47B33, 46E15, 30D45, 30D50.

The author is supported by DGICYT grant MTM2008-05561-C02-01 and SGR grant 2009 SGR 420.

Received by the editors on January 29, 2007, and in revised form on May 16, 2007.