THE HOGGATT-BERGUM CONJECTURE ON D(-1)-TRIPLES $\{F_{2k+1}, F_{2k+3}, F_{2k+5}\}$ AND INTEGER POINTS ON THE ATTACHED ELLIPTIC CURVES

YASUTSUGU FUJITA

ABSTRACT. Denote by F_n the nth Fibonacci number. We show that if a positive integer d satisfies the property that for an integer $k \geq 0$ each of $F_{2k+1}d+1$, $F_{2k+3}d+1$ and $F_{2k+5}d+1$ is a perfect square, then d must be $4F_{2k+2}F_{2k+3}F_{2k+4}$. Using this result, we further show that if for an integer $k \geq 1$ the rank of the attached elliptic curve

$$E_k : y^2 = (F_{2k+1}x + 1)(F_{2k+3}x + 1)(F_{2k+5}x + 1)$$

over \mathbf{Q} equals one, then the integer points on E_k are given by

$$(x,y) \in \{(0,\pm 1), (4F_{2k+2}F_{2k+3}F_{2k+4}, \pm (2F_{2k+2}F_{2k+3} + 1) \times (2F_{2k+3}^2 - 1)(2F_{2k+3}F_{2k+4} - 1))\}.$$

1. Introduction. Diophantus found that the rational numbers 1/16, 33/16, 68/16, 105/16 have the property that the product of any two of them increased by one is a square of a rational number. The first example of four positive integers with such a property was found by Fermat, which was the set $\{1,3,8,120\}$. Replacing "one" by "n" leads to the following definition.

Definition 1. Let n be a nonzero integer. A set $\{a_1, \ldots, a_m\}$ of m distinct positive integers is called a Diophantine m-tuple with the property D(n) (or a D(n)-m-tuple) if $a_ia_j + n$ is a perfect square for all i, j with $1 \le i \le j \le m$.

In case n = 1, a folklore conjecture says that a D(1)-quintuple does not exist. This is an immediate consequence of the following:

Received by the editors on November 27, 2006, and in revised form on May 26, 2007.

 $^{{\}rm DOI:} 10.1216/{\rm RMJ-} 2009-39-6-1907 \quad {\rm Copy\, right @2009\, Rocky\, Mountain\, Mathematics\, Consortium}$