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CONVERSE JENSEN INEQUALITY
P.J. FITZSIMMONS

ABSTRACT. We use Skorokhod’s embedding theorem to
give a new proof of a converse to Jensen'’s inequality.

Let (Q,F,P) be a probability space, and let X be an element of
LY(Q,F,P). Let G C F be a o-algebra, and define

Y = E[X|]F],

an element of L}(Q,G,P). If p : R — R is convex, then the conditional
form of Jensen’s inequality asserts that

Elp(X)|9] = p(E[X[F]) = ¢(Y), as.,

part of the assertion being that the expectations are almost surely well-
defined. In particular,

(1) E[p(X)] = E[p(Y)],
with an analogous stipulation. The following converse assertion seems

to be well known, see [2, 3]. The proof we present may have some

claim to novelty. We write X 4 Y to indicate that random variables X
and Y have the same distribution.

Theorem. Let X andY be integrable random variables such that (1)
holds for all convex p. Then there is a probability space (', F',P’),
a random variable X' € LY(Q', F',P’), and a o-algebra G' C F' such

that X £ X' and Y LE[X' | ¢'].

Proof. Taking ¢(z) = = and then ¢(x) = —z, we see that E[X] =
E[Y]. Let B = (B;) be a one-dimensional Brownian motion defined
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