CONSTRUCTION OF BIHOLOMORPHIC CONVEX MAPPINGS ON D_p IN C^n ## MING-SHENG LIU AND YU-CAN ZHU ABSTRACT. In this paper, we first prove some sufficient conditions for the biholomorphic convex mappings on the Reinhardt domain D_p $(p_j \geq 2, \ j=1,\dots,n)$ in C^n . From these, we construct some concrete examples of biholomorphic convex mappings on the Reinhardt domain D_p $(p_j \geq 2, \ j=1,\dots,n)$. We also introduce a linear operator and a subclass of biholomorphic convex mappings for the purpose of constructing some biholomorphic convex mappings on D_p in C^n . Let C^n be the vector space of n-complex variables $z=(z_1,z_2,\ldots,z_n)$ with the usual inner product $\langle z,w\rangle=\sum_{j=1}^n z_j\overline{w}_j,$ where $w=(w_1,w_2,\ldots,w_n)\in C^n$. Suppose that D is a domain in C^n . If, for every $z\in D$, $\lambda\in C$ and $|\lambda|\leq 1$, we have $\lambda z\in D$, then we call D a balanced domain. The Minkowski functional of a balanced domain D is defined by $$\rho(z) = \inf\left\{t > 0, \frac{z}{t} \in D\right\}, \quad z \in \mathbb{C}^n.$$ Suppose that D is a bounded convex balanced domain in C^n and $\rho(z)$ is the Minkowski functional of D. Then $\rho(\bullet)$ is a norm of C^n , and $D = \{z \in C^n : \rho(z) < 1\}, \ \rho(\lambda z) = |\lambda|\rho(z), \text{ where } \lambda \in C, \ z \in C^n \text{ and } \rho(z) = 0 \text{ if and only if } z = 0, \text{ see } [15].$ Assume $p_j>1,\ j=1,2,\ldots,n.$ Let $D_p=\{(z_1,z_2,\ldots,z_n)\in C^n:\sum_{j=1}^n|z_j|^{p_j}<1\}.$ Then D_p is a bounded convex balanced domain in ²⁰⁰⁰ AMS Mathematics subject classification. Primary 32H05, 30C45. Keywords and phrases. Biholomorphic convex mapping, Reinhardt domain, Minkowski functional. This research is partly supported by the National Natural Science Foundation of China (No. 10471048), the Natural Science Foundation of Fujian Province, China (No. Z0511013) and the Education Commission Foundation of Fujian Province, China (No. JB04038). Received by the editors on June 21, 2005, and in revised form on January 8, 2006. $DOI:10.1216/RMJ-2009-39-3-853 \quad Copyright © 2009 \ Rocky \ Mountain \ Mathematics \ Consortium \ Mathematics \ Consortium \ Mathematics \ Consortium \ Mathematics Mat$