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SOME APPLICATIONS OF
GASPER’S BIBASIC SUMMATION FORMULA

YUSEN ZHANG AND TIANMING WANG

ABSTRACT. A new bibasic summation formula for hyper-
geometric series is found by a special inversion formula and
it is applied to derive a class of transformation formulas and
summation formulas for basic hypergeometric series only by
elementary methods. The ordinary hypergeometric limits of
these formulas are also obtained.

1. Introduction. All the notation and terminology is adopted from
[9]. The (generalized) hypergeometric series is defined by

A1y... ,Qp [e's) (a) (a)

F, 2| = A \Br)n on

r+14r 3 ,
bi,... b, nZ:()n!(bl)n”'(bs)n

where the rising factorial (a),, is given by
(a)ni=ala+1)(a+2)---(a+n—1), n>1, (a):=1.

The gamma function can be used to extend to rising factorials by
defining (a)g = limy_,, I'(y + 8)/T'(7), B arbitrary. A hypergeometric
series ,41F, is called very well-poised if a; + b; = 1 4 a¢ for i =
1,2,...,r, and among the parameters a; occurs 1 + ap/2. We use
the standard abbreviation for very well-poised hypergeometric series,
r+lv;"(a0; a2, a3, ... ,0r; Z)
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