ON THE STRUCTURE OF EVEN UNIMODULAR EXTREMAL LATTICES OF RANK 40

MICHIO OZEKI

In memory of the late Professor Hel Braun

1. Introduction. Let $\Gamma_{8k}(k \geq 1)$ be the genus consisting of all equivalence classes of positive definite even unimodular quadratic lattices of rank 8k. In an element L of Γ_{8k} , a vector x in L is called a 2m-vector if x satisfies (x, x) = 2m, where (,) is the inner product of L and 2m is an even integer. In obtaining a complete picture of the configurations of all equivalence classes in $\Gamma_{8k}(k \geq 4)$, the classes of lattices without 2-vectors would be a main obstacle.

In this paper, we study the subfamily $\Gamma_{40,0}$ of Γ_{40} consisting of all equivalence classes of lattices without 2-vector. As in [7], we use $\mathcal{L}_{2m}(L)$ (respectively, $\mathcal{L}_{2m_1+2m_2}(L)$) to denote the sublattice of Lgenerated by all 2m-vectors (respectively $2m_1$ -vectors and $2m_2$ -vectors) in L. In §2, we prove

THEOREM 1. Let L be a lattice in $\Gamma_{40,0}$. Then we have

 $L = \mathcal{L}_{4+6}(L).$

In §3, we shall introduce the notion of the *c*-sublattice of a lattice in $\Gamma_{40,0}$. We expect this notion would play a role in the study of the structures of lattices in $\Gamma_{40,0}$, and also in $\Gamma_{32,0}$. However our present study of the *c* sublattice is merely a beginning of exploration.

We collect some standard notations used throughout the paper: \mathbf{Q} is the field of rational numbers, \mathbf{Z} is the ring of rational integers, $\mathbf{M}(1, k)$ (respectively $\mathbf{S}(1, k)$) is the linear space of modular (respectively cusp) forms of degree 1 and weight k, $\mathbf{E}_k(\mathbf{z})$ is Eisenstein series of degree 1 and weight k, $\Delta_{12}(\mathbf{z})$ is the normalized cusp form of degree 1 and weight 12. Special notations are explained in the appropriate places if necessary.

Received by the editors on October 21, 1986.

Copyright ©1989 Rocky Mountain Mathematics Consortium