
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 18, Number 3, Summer 1988 

ERGODIC SEQUENCES A N D A SUBSPACE OF B(G) 

PAUL MILNES AND ALAN L.T. PATERSON 

ABSTRACT. J. Blum and E. Eisenberg studied conditions 
on a sequence {/xn} of probability measures on a locally com­
pact abelian group G which ensured that, for any strongly 
continuous unitary representation TT of G on a Hilbert space 
H and for any £ € if, {Jc ir(x)^dfin(x)} converges to a G-
invariant member of H. In this paper their result is (essen­
tially) generalized to non-abelian G. The generalization in­
volves Bj (G) , the closure of the linear span of the coefficients 
of the irreducible representations of G; thus Bj (G) contains 
AP(G) always, and equals A(G) if G is compact or abelian. 
The relationships of Bj (G) to AP(G) and to GQ(G) are inves­
tigated and Bj (G) is identified for some non-abelian groups, 
in particular, for the Heisenberg group, for which Bj (G) is 
not an algebra. 

1. Introduction. Let G be a locally compact abelian group. By 
representation of G, we shall mean a strongly (equivalently, weakly) 
continuous unitary representation TT of G on a Hilbert space H (as in 
[7; §13.1]) The fixed point set of -K is 

Hf = {£eH: TT(X)Ç = £ for all x € G}. 

A sequence {/xn} of probability measures on G is called a a strong 
operator ergodic (s.o. ergodic) sequence or a generalized summing 
sequence if, for every representation TT of G on a Hilbert space H and 
for every £ e H, {7r(/in)£} converges in norm to a member of Hf. It is 
readily seen (via [10, §23], for example) that {/in} is s.o. ergodic if and 
only if, for every representation TT of G on if, 7r(/in) —• P in the strong 
operator topology, where P is the orthogonal projection onto Hf. 

Blum and Eisenberg [1] proved the following interesting. 
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