DUAL MODULES AND GROUP ACTIONS ON EXTRA-SPECIAL GROUPS

I.M. ISAACS

1. Introduction. When constructing examples or counter-examples in the theory of solvable groups, it is often the case that what is needed is some group which acts in an interesting way on an extra-special p-group. Specifically, what we have in mind is the following.

Let G be a finite group and let V be an irreducible FG-module where F = GF(p). It is easy to construct an extra-special p-group E acted on by G such that E = AB where A and B are G-invariant elementary abelian normal subgroups with $A \cap B = Z = \mathbf{Z}(E)$. This can be done so that A/Z is FG-isomorphic to V and B/Z is FG-isomorphic to the "dual" or contragredient FG-module V^* . Furthermore, G acts trivially on Z.

Now comes the more subtle part. Suppose $G \triangleleft \Gamma$ where $|\Gamma : G| = 2$ and where the conjugation action of Γ on the set of isomorphism classes of *FG*-modules interchanges the classes of *V* and *V*^{*}. (We allow the possibility that $V \simeq V^*$ and this isomorphism class is Γ -invariant.) The question is whether or not the action of *G* on *E* can be extended to a Γ -action in which the elements of $\Gamma - G$ interchange *A* and *B*.

The answer is "yes".

THEOREM A. Let $G \triangleleft \Gamma$ with $|\Gamma : G| = 2$ and let V be an irreducible FG-module where F = GF(p). Assume that V is conjugate to V^{*} in Γ . Then Γ acts on an extra-special p-group E and the following hold.

a) E = AB where $A, B \triangleleft E$ are elementary abelian and $A \cap B = \mathbf{Z}(E)$.

b) G centralizes $Z = \mathbf{Z}(E)$ and acts on A/Z and B/Z as it does on V and V^{*} respectively.

c) The elements of $\Gamma - G$ interchange A and B and either all of them centralize or else all of them invert Z. Furthermore, the choice of the

Research partially supported by a grant from the National Science Foundations. Received by the editors on June 10, 1984, and in revised form on June 24, 1986.