COMPARISON THEOREMS FOR FOCAL POINTS OF SYSTEMS OF N-TH ORDER NONSELFADJOINT DIFFERENTIAL EQUATIONS

E.C. TOMASTIK

ABSTRACT. A comparison theorem will be given for focal points of $x^{(n)} - \sum_{\mu=0}^{n-1} P_{\mu}(t) x^{(\mu)} = 0$, where $n \geq 2$, P_{μ} are $m \times m$ matrices with continuous elements on $[a.b], a \geq 0$, and where no assumptions are made concerning the symmetry of any of the P_{μ} nor the sign of the elements of P_{μ} .

A comparison theorem will be given for focal points of a very general class of linear ordinary differential equations, with continuous coefficient matrices. The system is

(1)
$$x^{(n)} - \sum_{\mu=0}^{n-1} P_{\mu}(t) x^{(\mu)} = 0$$

where $n \geq 2, P_{\mu}$ are $m \times m$ matrices with continuous elements on $[a,b], a \geq 0$.

No assumptions are made concerning the symmetry of any of the P_{μ} so that (1) may be nonselfadjoint. If (1) is selfadjoint, the results presented here are new. No assumptions are made concerning the sign of the elements of P_{μ} , making the results new in the scalar case.

The focal point of (1) will be compared to that of

(2)
$$y^{(n)} - (-1)^{n-k} \sum_{\mu=0}^{n-1} Q_{\mu}(t) y^{(\mu)} = 0,$$

where $k \in \{1, ..., n-1\}$ and Q_{μ} are continuous $m \times m$ matrices on [a, b] satisfying some positivity conditions with respect to a cone.

Received by the editors on June 13, 1986.