COMPACT WEIGHTED COMPOSITION OPERATORS ON SOBOLEV RELATED SPACES

HERBERT KAMOWITZ AND DENNIS WORTMAN

ABSTRACT. If m is a positive integer and $1 \leq p \leq \infty$, let $W_{m,p}$ denote the set of functions f on the unit interval [0,1] for which $f,f',\ldots,f^{(m-1)}$ are absolutely continuous and $f^{(m)} \in L^p$. With $||f||_{W_{m,p}} = \left(\sum_{s=0}^m ||f^{(s)}||_p^p\right)^{1/p}$, $1 \leq p < \infty$, $W_{m,p}$ is a Banach space. We show that if $u \in W_{m,\infty}, \varphi: [0,1] \to [0,1], \varphi \in W_{m,\infty} \cap C^1$, and there exists a positive integer N for which $\varphi^{-1}([a,b])$ can be expressed as a union of N intervals for all $a,b \in [0,1]$, then the weighted composition operator $uC_{\varphi}: f(x) \to u(x)f(\varphi(x))$ is a bounded linear operator on $W_{m,p}$ which is compact if and only if $u\varphi' = 0$. Further, if uC_{φ} is compact on $W_{m,p}$, then the spectrum $\sigma(uC_{\varphi}) = \{\lambda | \lambda^n = u(c) \ldots u(\varphi_{n-1}(c))$ for some positive integer n and some fixed point c of φ of order $n\} \cup \{0\}$.

If m is a positive integer and $1 \leq p \leq \infty$ let $W_{m,p}$ denote the set of functions f on [0,1] for which f and the derivatives $f', f'', \ldots, f^{(m-1)}$ lie in AC, the space of absolutely continuous functions on [0,1], and $f^{(m)} \in L^p(0,1) \equiv L^p$. For $1 \leq p < \infty, W_{m,p}$ is a Banach space under the norm $||f||_{W_{m,p}} = \left(\sum_{s=0}^m ||f^{(s)}||_p^p\right)^{1/p}$. These spaces are closely related to Sobolev spaces on [0,1] (see [1,2,3]). A weighted composition operator on $W_{m,p}$ is a map from $W_{m,p}$ to itself of the form $f(x) \to u(x)f(\varphi(x))$, where $u: [0,1] \to \mathbb{C}$ and $\varphi: [0,1] \to [0,1]$. We denote such a map by uC_{φ} .

In [1] Antonevich considered weighted composition operators on $W_{m,p}$, where $u, \varphi \in C^m[0,1]$ and φ is a bijection of [0,1] onto itself and determined their spectra. In this note we study other weighted composition operators on $W_{m,p}$ and characterize those operators which are compact. We show that if $u \in W_{m,\infty}, \varphi \in W_{m,\infty} \cap C^1$ and if $uC_{\varphi}: W_{m,p} \to W_{m,p}$, then uC_{φ} is compact if and only if $u\varphi' = 0$. Further, if we let φ_n denote the nth iterate of φ and $\sigma(uC_{\varphi})$ the spectrum of uC_{φ} , then if uC_{φ} is compact on $w_{m,p}$, we have that $\sigma(uC_{\varphi})\setminus\{0\} = \{\lambda|\lambda^n = u(c)\dots u(\varphi_{n-1}(c)) \text{ for some positive integer}$

¹⁹⁸⁰ Mathematics Subject Classification: 47B37, 47B05. Received by the editors on October 25, 1984.