SOME JESSEN-BECKENBACH INEQUALITIES

JOSIP E. PEČARIĆ AND PAUL R. BEESACK

1. Introduction. In 1966 E.F. Beckenback [1] (see also [4, p.52] or [5, p.81] proved the following generalization of Hölder's inequality:

Let $a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n)$ be two n-tuples of positive real numbers, and p, q be real numbers such that $p^{-1} + q^{-1} = 1(p > 1)$. If 0 < m < n, then

(1)
$$\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{1/p} \left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{-1} \geq \left(\sum_{i=1}^{n} \tilde{a}_{i}^{p}\right)^{1/p} \left(\sum_{i=1}^{n} \tilde{a}_{i} b_{i}\right)^{-1},$$

where

$$\tilde{a}_i = a_i (1 \le i \le m), \quad \tilde{a}_i = \left\{ b_i \sum_{j=1}^m a_j^p / \sum_{j=1}^m a_j b_j \right\}^{q/p} (m+1 \le i \le n).$$

Equality holds in (1) if and only if $\tilde{a}_i \equiv a_i$. The inequality in (1) is reversed if $p < 1, p \neq 0$. For m = 1, (1) reduces to Hölder's inequality.

In this paper we shall give some generalizations of this result with \sum replaced by an isotonic linear functional. See especially Corollary 3, and Remark 4, below.

2. Main results. Let E be a nonempty set, let \mathcal{A} be an algebra of subsets of E, and let L be a linear class of real-valued functions $g: E \to \mathbf{R}$ having the properties

L1: $f, g \in L \Rightarrow (af + bg) \in L \text{ for all } a, b \in \mathbb{R};$

L2: $1 \in L$, that is if f(t) = 1 for $t \in E$, then $f \in L$;

L3: $f \in L, E_1 \in A \Rightarrow fC_{E_1} \in L$,

where C_{E_1} is the characteristic function of $E_1(C_{E_1}(t) = 1 \text{ for } t \in E_1$, or 0 if $t \in E \setminus E_1$). It follows from L2, L3 that $C_{E_1} \in L$ for all $E_1 \in A$. Also note that L contains all constant functions by L1, L2.

We also consider isotonic linear functionals $A: L \to \mathbf{R}$. That is, we

Received by the editors on November 26, 1985.