LIFTING OF ROTUNDITY PROPERTIES FROM E TO $L^p(\mu, E)$

GIOVANNI EMMANUELE AND ALFONSO VILLANI

ABSTRACT. We consider some rotundity properties which are extensions of the uniform rotundity and show that these properties lift from the Banach space E (or from the conjugate Banach space E^*) to the Lebesgue-Bochner function space $L^p(\mu, E)$ (or to $(L^p(\mu, E))^*$), $1 . We make no assumption on <math>E^*$; in particular, we do not assume that E^* has the Radon-Nikodym property.

0. Introduction. In their paper [16] Smith and Turett give several interesting results about the geometry of the Lebesgue–Bochner function spaces $L^p(\mu, E)$. In particular they show that the following statement holds.

THEOREM 0. Let (S, \sum, μ) , a finite measure space, and E, a Banach space, be given. Assume that E^* , the conjugate space of E, satisfies the Radon-Nikodym property. Then $L^p(\mu, E)$, 1 , is weakly uniformly rotund if and only if <math>E is.

One of the purposes of this paper is to prove the above result without any assumption on E^* . (By the way, it is unknown up to now whether the weak uniform rotundity of a Banach space E implies that E^* has the Radon–Nikodym property). Moreover, we consider three other geometric properties, namely weak local uniform rotundity weak* uniform rotundity (in a conjugate space) and weak* local uniform rotundity, and we show that they lift from E (or E^*) to $L^p(\mu, E)$ (or $(L^p(\mu, E))^*$). Also for these properties we will make no assumption on E^* . It is worth noting that assuming the Radon–Nikodym property for E^* would be an effective restriction in this case (see Remark 4 at the end of the paper).

Work performed under the auspices of G.N.A.F.A. of Italian C.N.R. and partially supported by a national project of Italian Mi nistero della Pubblica Istruzione (40% -1983).

Received by the editors on November 14, 1984, and in revised form on Septmeber 6, 1985.