OSCILLATORY AND ASYMPTOTIC BEHAVIOR IN CERTAIN THIRD ORDER DIFFERENCE EQUATIONS

B. SMITH

1. Introduction. In this paper, the difference equation
$\left(E^{-}\right) \quad \Delta^{3} U_{n}-P_{n} U_{n+2}=0$,
where Δ denotes the differencing operation $\Delta U_{n}=U_{n+1}-U_{n}$, will be studied subject to the condition $P_{n}>0$ for each integer $n \geq 1$. An example is given which shows that it is possible for (E^{-}) to have only nonoscillatory solutions. Our main result is a discrete analogue of Taylor [15, Theorem 6], and is concerned with a characterization of the existence of oscillatory solutions of $\left(\mathrm{E}^{-}\right)$in terms of the behavior of nonoscillatory solutions. We also refer to the works of Hanan [3], Jones $[\mathbf{5}, \mathbf{6}]$ and Lazer $[\mathbf{7}]$.

We will use primarily the terminology of Fort's Book [1] in our discussion. A real sequence $U=\left\{U_{n}\right\}$ which satisfies (E^{-}) for each $n \geq 1$ we term a solution of (E^{-}). Hereafter the term "solution" shall mean a "nontrivial solution." By the graph of a solution U we will mean the polygonal path connecting the points $\left(n, U_{n}\right), n \geq 1$. Any point where the graph of U intersects the real axis is called a node. A solution of $\left(\mathrm{E}^{-}\right)$will be called oscillatory if it has arbitrarily large nodes; otherwise it is said to be nonoscillatory. Owing to the linearity of $\left(\mathrm{E}^{-}\right)$, we assume without loss of generality that all nonoscillatory solutions are eventually positive. Whenever (E^{-}) has an oscillatory solution we say that $\left(E^{-}\right)$is oscillatory. It is understood below that the variables n, m, N, M, i, j, k represent positive integers.
2. Preliminary Results. Our first result shows that initial values can be used to construct nonoscillatory solutions of (E^{-}). Since the proof is an easy argument, using the technique of mathematical induction, it will be omitted.

LEMMA 2.1. If U is a solution of $\left(E^{-}\right)$satisfying

$$
U_{m} \geq 0, \Delta U_{m} \geq 0, \Delta^{2} U_{m}>0
$$

Received by the editors on August 9, 1984, and in revised form on June 18, 1985.

