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ARITHMETIC PROGRESSIONS IN LACUNARY SETS
T.C. BROWN AND A.R. FREEDMAN

ABSTRACT. We make some observations concerning the
conjecture of Erdos that if the sum of the reciprocals of a
set A of positive integers diverges, then A contains arbitrarily
long arithmetic progressions. We show, for example, that one
can assume without loss of generality that A is lacunary. We
also show that several special cases of the conjecture are true.

1. Introduction. The now famous theorem of Szemerédi (7] is often
stated:

(a) If the density of a set A of natural numbers is positive, then A
contains arbitrarily long arithmetic progressions.

Let us call a set A of natural numbers k-good if A contains a k-
term arithmetic progression. Call A w-good if A is k-good for all
k > 1. We define four density functions as follows: For a set A
and natural numbers m,n, let A{m,n] be the cardinality of the set
AN{m,m+ 1,m+2,...,n}. Then define
8(A) = liminf 2027 A“’"]

n

5(A) = hmsup [1 n]

1
u(A) = lim min élm_uuﬁl and
n m>0

n
(A) = lim max AP Lm+n]
n m>0 n

It can be seen that the limits in the definitions of u and @ always exist.
These four “asymptotic” set functions are called the lower and upper
“ordinary” and the lower and upper “uniform” density of the set A
respectively. They are related by

u(A) < §(A) < 6(A) <u(A)
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