ARITHMETIC PROGRESSIONS IN LACUNARY SETS

T.C. BROWN AND A.R. FREEDMAN

Abstract

We make some observations concerning the conjecture of Erdös that if the sum of the reciprocals of a set A of positive integers diverges, then A contains arbitrarily long arithmetic progressions. We show, for example, that one can assume without loss of generality that A is lacunary. We also show that several special cases of the conjecture are true.

1. Introduction. The now famous theorem of Szemerédi [7] is often stated:
(a) If the density of a set A of natural numbers is positive, then A contains arbitrarily long arithmetic progressions.

Let us call a set A of natural numbers k-good if A contains a k term arithmetic progression. Call A ω-good if A is k-good for all $k \geq 1$. We define four density functions as follows: For a set A and natural numbers m, n, let $A[m, n]$ be the cardinality of the set $A \bigcap\{m, m+1, m+2, \ldots, n\}$. Then define

$$
\begin{aligned}
& \underline{\delta}(A)=\lim _{n} \inf \frac{A[1, n]}{n} \\
& \bar{\delta}(A)=\lim _{n} \sup \frac{A[1, n]}{n} \\
& \underline{u}(A)=\lim _{n} \min _{m \geq 0} \frac{A[m+1, m+n]}{n} \text { and } \\
& \bar{u}(A)=\lim _{n} \max _{m \geq 0} \frac{A[m+1, m+n]}{n}
\end{aligned}
$$

It can be seen that the limits in the definitions of \underline{u} and \bar{u} always exist. These four "asymptotic" set functions are called the lower and upper "ordinary" and the lower and upper "uniform" density of the set A respectively. They are related by

$$
\underline{u}(A) \leq \underline{\delta}(A) \leq \bar{\delta}(A) \leq \bar{u}(A)
$$

[^0]
[^0]: Research supported by NSERC Grants A-3982 and A-5360
 Received by the editors on January 10, 1985.

