DIRECT SUMS AND PRODUCTS OF ISOMORPHIC ABELIAN GROUPS

JOHN D. O'NEILL

Introduction. Suppose G is a reduced abelian group and I and J are infinite sets. When can the direct product G^{I} equal the direct sum $A^{(J)}$ for some subgroup A ? If G is a torsion group, then G must be torsion by Corollary 2.4 in [3] and the answer is easy to determine. In Theorem 1 we provide an answer for all cases where $|G|$ or $|I|$ is nonmeasurable. We then present, in Example 2, a group decomposition $G^{I}=A^{(J)}$ where G is reduced and unbounded. There is another unusual decomposition of G^{I} which occurs whenever $|I|$ is measurable and seems worth mentioning. We do this in Example 3.
In this paper all groups are abelian. By G^{I} and $G^{(I)}$ we mean the direct product and direct sum respectively of copies of G indexed by I. If I is a set, then $|I|$ is measurable if there is a $\{0,1\}$-valued countably additive function μ on $P(I)$, the power set of I such that $\mu(I)=1$ and $\mu(\{i\})=0$ for each $i \in I$. The letter N denotes the set of natural numbers. Unexplained terminology may be found in [2].

Theorem 1. Let G be a reduced group and let I and J be infinite sets. If $|G|$ or $|I|$ is non-measurable, then $G^{I}=A^{(J)}$ for some subgroup A if and oniy if $G=B \oplus C$, where $B^{I} \cong T^{(J)}$ for some bounded subgroup T and $C^{I} \cong C^{(J)} \cong C^{k}$ for some positive integer k.

Proof. Sufficiency is clear so we assume $G^{I}=A^{(J)}$ and derive the stated conditions. Write $X=\prod_{I} G_{i}=\oplus_{J} A_{j}$ where $\phi_{i}: G_{i} \rightarrow G$ is an isomorphism for each i and $A_{J} \cong A$ for each j.
(A) Suppose $|G|$ is non-measurable. Let $f_{j}: X \rightarrow A_{j}$ be the obvious protection and let ($S,+, \cdot$) be the Boolean ring on $S=P(I)$. Also let $K=\left\{s \in S\right.$: there is an n_{s} in N such that $n_{s} f_{j}\left(\prod_{s} G_{i}\right)=0$ for almost all $j\}$ and set $H=\left\langle\Pi_{s} G_{i}: s \in K\right\rangle$. Clearly K is an ideal in S. Thus H consists of the elements in G with support in K. The crucial fact for our proof is that K is a γ-ideal in S (i.e., if $\left\{s_{n}: n \in N\right\}$ is an

[^0]
[^0]: Received by the editors on July 12, 1983, and in revised form on September 25, 1985

