DIRECT SUMS AND PRODUCTS OF ISOMORPHIC ABELIAN GROUPS

JOHN D. O'NEILL

Introduction. Suppose G is a reduced abelian group and I and J are infinite sets. When can the direct product G^{I} equal the direct sum $A^{(J)}$ for some subgroup A? If G is a torsion group, then G must be torsion by Corollary 2.4 in [3] and the answer is easy to determine. In Theorem 1 we provide an answer for all cases where |G| or |I| is non-measurable. We then present, in Example 2, a group decomposition $G^{I} = A^{(J)}$ where G is reduced and unbounded. There is another unusual decomposition of G^{I} which occurs whenever |I| is measurable and seems worth mentioning. We do this in Example 3.

In this paper all groups are abelian. By G^{I} and $G^{(I)}$ we mean the direct product and direct sum respectively of copies of G indexed by I. If I is a set, then |I| is measurable if there is a $\{0, 1\}$ -valued countably additive function μ on P(I), the power set of I such that $\mu(I) = 1$ and $\mu(\{i\}) = 0$ for each $i \in I$. The letter N denotes the set of natural numbers. Unexplained terminology may be found in [2].

THEOREM 1. Let G be a reduced group and let I and J be infinite sets. If |G| or |I| is non-measurable, then $G^{I} = A^{(J)}$ for some subgroup A if and only if $G = B \oplus C$, where $B^{I} \cong T^{(J)}$ for some bounded subgroup T and $C^{I} \cong C^{(J)} \cong C^{k}$ for some positive integer k.

PROOF. Sufficiency is clear so we assume $G^I = A^{(J)}$ and derive the stated conditions. Write $X = \prod_I G_i = \bigoplus_J A_j$ where $\phi_i : G_i \to G$ is an isomorphism for each i and $A_J \cong A$ for each j.

(A) Suppose |G| is non-measurable. Let $f_j: X \to A_j$ be the obvious protection and let $(S, +, \cdot)$ be the Boolean ring on S = P(I). Also let $K = \{s \in S : \text{there is an } n_s \text{ in } N \text{ such that } n_s f_j(\prod_s G_i) = 0 \text{ for almost}$ all $j\}$ and set $H = \langle \prod_s G_i : s \in K \rangle$. Clearly K is an ideal in S. Thus H consists of the elements in G with support in K. The crucial fact for our proof is that K is a γ -ideal in S (i.e., if $\{s_n : n \in N\}$ is an

Received by the editors on July 12, 1983, and in revised form on September 25, 1985