INTEGRAL REPRESENTATIONS OF LINEAR FUNCTIONALS ON FUNCTION MODULES

GERHARD GIERZ

ABSTRACT. An integral representation for linear functionals on function modules is given under the condition that the function module is 'uniformly separable'. This result is a generalization of Riesz' Representation Theorem for linear functionals on C(X). The results apply to spaces of (weighted) vector valued functions and to Grothendieck's G-spaces.

- 1. Introduction. Function modules were first introduced by R. Godement [5], I. Kaplansky [7], and M.A. Naimark [13] under the name of Continuous Sums. They considered spaces E of functions σ defined on a topological space X with values in given Banach spaces $E_x, x \in X$, satisfying the following axioms:
- (1) E is a closed linear subspace of the Banach space $\{\sigma \in \prod_{x \in X} E_x : \sup_{x \in X} ||\sigma(x)|| < \infty\}$, equipped with the norm $||\sigma|| = \sup_{x \in X} ||\sigma(x)||$.
- (2) The function $x \mapsto ||\sigma(x)|| : X \to \mathcal{R}$ is upper semicontinuous for every $\sigma \in E$.
 - (3) $E_x = {\sigma(x) : \sigma \in E}$ for every $x \in X$.
- (4) E is a $C_b(X)$ -module with respect to the multiplication $(f, \sigma) \mapsto f\sigma$ where $(f\sigma)(x) = f(x)\sigma(x)$ and where $C_b(X)$ denotes the algebra of all bounded continuous scalar valued functions on X.

Let us agree to call E a function module over X. For a given $x \in X$, the Banach space E_x is called the *stalk over* x.

Function modules are important in the representation theory of C^* -algebras (see Dauns and Hofmann [3]). For compact Hausdorff spaces X, the notion of function modules is also equivalent to the notion of spaces of section in a Banach bundle over X (see [4] for the details of this equivalence). Examples for function modules are the Banach spaces $C_b(X), C_b(X, F)$ (the space of all continuous functions with values in a given Banach space F) as well as spaces of continuous functions equipped with a weighted norm.

The object of the present note is to study the dual space of a function module. For all the examples mentioned above, integral representations

¹⁹⁸⁰ Mathematics Subject Classification: 46E40 46B10 46G10 Received by the editors on January 18, 1985.