A NOTE ON PURE RESOLUTIONS OF POINTS IN GENERIC POSITION IN P_k^n

WILLIAM C. BROWN

Preliminaries. Let $P_1, \ldots P_s \in \mathbf{P}_k^n$ denote s distinct points in projective n-space \mathbf{P}_k^n . Throughout this paper, k will denote an algebraically closed field whose characteristic is arbitrary (except for a couple of examples near the end). Let $S = k[X_0, \ldots, X_n]$ denote the polynomial ring in n+1 variables X_0, \ldots, X_n over k. If I denotes the ideal of P_1, \ldots, P_s in S, then I is a perfect, unmixed, radical ideal of grade n. Let R = S/I, the coordinate ring of P_1, \ldots, P_s . R is a standard graded k-algebra, Cohen-Macaulay of dimension one and has projective dimension n as an S-module. Thus, R has a minimal, free resolution Γ of the form:

(1)
$$\Gamma: 0 \to \bigoplus_{i=1}^{\beta_n} S(-d_i^{(n)}) \xrightarrow{\phi_n} \cdots \to \bigoplus_{i=1}^{\beta_2} S(-d_i^{(2)}) \xrightarrow{\phi_2} \cdots \to \bigoplus_{i=1}^{\beta_2} S(-d_i^{(2)}) \xrightarrow{\phi_1} S \to R \to 0.$$

In (1), β_1, \ldots, β_n are the nontrivial betti numbers of R. Each ϕ_1 is a homogeneous, S-module homomorphism of degree zero. Consequently, ϕ_i can be represented by a $\beta_i \times \beta_{i-1}$ matrix $(\alpha_{pq}^{(i)})$ where $\alpha_{pq}^{(i)}$ is a homogeneous form in S of degree $\partial(\alpha_{pq}^{(i)}) = d_p^{(i)} - d_q^{(i-1)}$. Γ being minimal means every $\alpha_{p,q}^{(i)} \in (X_0, \ldots, X_n)$. The $d_i^{(j)}$ in (1) are called the twisting numbers of R and, along with β_1, \ldots, β_n , are unique.

We say P_1, \ldots, P_s have a pure resolution of type (d_1, \ldots, d_n) if, in the minimal resolution (1) of R, we have for all $j = 1, \ldots, n$ and for all $i = 1, \ldots, \beta_j, d_i^{(j)} = d_j$. Thus, P_1, \ldots, P_s have a pure resolution of type (d_1, \ldots, d_n) with betti numbers β_1, \ldots, β_n if and only if the minimal, free resolution Γ of R has the simple form:

(2)
$$\Gamma: 0 \to S(-d_n)^{\beta_n} \to \cdots \to S(-d_2)^{\beta_2} \to S(-d_1)^{\beta_1} \to S \to R \to 0.$$

We note that the minimality of Γ implies $0 < d_1 < d_2 < \cdots < d_n$ in (2).

Received by the editors on March 11, 1985 and in revised form on September 16, 1985.