A NOTE ON $\beta D-D$

S. BROVERMAN AND A. DOW

ABSTRACT. Let $U(\kappa)$ be the space of ultrafilters on the infinite regular cardinal κ and let SL_{κ} be the generalization of "Solovay's Lemma" SL_{ω} to κ . Our main result is to show that, assuming SL_{ω} , every cellular family of fewer than 2^{κ} open subsets of $U(\kappa)$ has a C^* -embedded selection. Further results are provided which are intended to exhibit the need for assuming SL_{κ} in the above result.

1. Introduction. In this paper we present some results concerning the C^* -embedding of subsets of βD -D. βD -D (also denoted D^*) denotes the remainder of the Cech-Stone compactification of the discrete space D, and a subset is said to be C^* -embedded if every bounded continuous real-valued function on the subspace can be extended to one on the entire space. For backgound on C^* -embedding and Cech-Stone compactifications the reader is referred to [5,9].

There are many known related results. Before stating some of the known results, we introduce some notation.

DEFINITION.

(i) A cellular family of subsets of a space is a family, any two members of which are pairwise disjoint.

(ii) A clopen subset is one that is both closed and open.

(iii) If κ is an infinite cardinal, then a uniform ultrafilter on a set of size κ is an ultrafilter all of whose members has cardinality κ . Given a discrete set D of size κ , the subspace of $\beta D-D$ consisting of the uniform ultrafilters is denoted $U(\kappa)$. Thus, $U(\omega) = \beta N-N$.

(iv) If κ is an infinite cardinal, then Solovay's Lemma for cardinal κ (denoted $\operatorname{SL}_{\kappa}$) is the following statement: Suppose λ is an infinite cardinal for which $\lambda < 2^{\kappa}$. Let $\{F_i\}_{i < \lambda}$ and $\{G_j\}_{j < \lambda}$ be collections of subsets of κ such that if $j < \kappa$ and S is a subset of κ for which $|S| < \kappa$, then $|G_j - \bigcup_{i \in S} F_i| = \kappa$. Then there is a set $B \subset \kappa$ such that, for any $i < \kappa$, $|B \cap F_i| < \kappa$ and $|B \cap G_i| = \kappa$.

Spaces of the form $U(\kappa)$ have been studied in detail in [3]. Solovay's

Received by the editors on February 8, 1984 and in revised form on October 21, 1985.