A NOTE ON $\beta \mathbf{D}-\mathrm{D}$

S. BROVERMAN AND A. DOW

Abstract

Let $U(\kappa)$ be the space of ultrafilters on the infinite regular cardinal κ and let SL_{κ} be the generalization of "Solovay's Lemma" SL_{ω} to κ. Our main result is to show that, assuming SL_{ω}, every cellular family of fewer than 2^{κ} open subsets of $U(\kappa)$ has a C^{*}-embedded selection. Further results are provided which are intended to exhibit the need for assuming SL_{κ} in the above result.

1. Introduction. In this paper we present some results concerning the C^{*}-embedding of subsets of $\beta D-D . \beta D-D$ (also denoted $\left.D^{*}\right)$ denotes the remainder of the Cech-Stone compactification of the discrete space D, and a subset is said to be C^{*}-embedded if every bounded continuous real-valued function on the subspace can be extended to one on the entire space. For backgound on C^{*}-embedding and Cech-Stone compactifications the reader is referred to $[5,9]$.

There are many known related results. Before stating some of the known results, we introduce some notation.

Definition.

(i) A cellular family of subsets of a space is a family, any two members of which are pairwise disjoint.
(ii) A clopen subset is one that is both closed and open.
(iii) If κ is an infinite cardinal, then a uniform ultrafilter on a set of size κ is an ultrafilter all of whose members has cardinality κ. Given a discrete set D of size κ, the subspace of $\beta D-D$ consisting of the uniform ultrafilters is denoted $U(\kappa)$. Thus, $U(\omega)=\beta N-N$.
(iv) If κ is an infinite cardinal, then Solovay's Lemma for cardinal κ (denoted SL_{κ}) is the following statement: Suppose λ is an infinite cardinal for which $\lambda<2^{\kappa}$. Let $\left\{F_{i}\right\}_{i<\lambda}$ and $\left\{G_{j}\right\}_{j<\lambda}$ be collections of subsets of κ such that if $j<\kappa$ and S is a subset of κ for which $|S|<\kappa$, then $\left|G_{j}-\cup_{i \in S} F_{i}\right|=\kappa$. Then there is a set $B \subset \kappa$ such that, for any $i<\kappa,\left|B \cap F_{i}\right|<\kappa$ and $\left|B \cap G_{i}\right|=\kappa$.

Spaces of the form $U(\kappa)$ have been studied in detail in [3]. Solovay's

[^0]
[^0]: Received by the editors on February 8, 1984 and in revised form on October 21, 1985.

