ON SUMS OF SIXTEEN SQUARES

JOHN A. EWELL

Abstract

The author shows that the function r_{16}, which counts the totality of representations of a natural number by sums of sixteen squares, is expressible entirely in terms of real divisor-functions.

1. The main result. It is the purpose of this paper to prove the following formula for the number $r_{16}(n)$ of ways of representing a positive integer n by sums of sixteen squares:
(1)

$$
\begin{aligned}
r_{16}(n)=\frac{32}{17}\left[\sigma_{7}(n)\right. & -2 \sigma_{7}(n / 2)+2^{8} \sigma_{7}(n / 4) \\
& +(-1)^{n-1} 16\left(2^{3 b(n)} \sigma_{3}(0(n))\right. \\
& \left.\left.+16 \sum_{d=1}^{n-1}(-1)^{d} d^{3} \sum_{k=1} 2^{3 b(n-k d)} \sigma_{3}(0(n-k d))\right)\right]
\end{aligned}
$$

where for positive integers $r, m, \sigma_{r}(m)$ denotes the sum of the r th powers of all positive divisors of m, otherwise $\sigma_{r}(x):=0 ; b(n)$ denotes the exponent of the highest power of 2 dividing n; and, $0(n)$ is then defined by the equation $n=2^{b(n)} 0(n)$. (By convention the sum on the right side of (1), indexed by k, extends over all positive integral values of k for which $n-k d>0$.)

Proof of (1): We, first of all, recall that the modular function f is defined on the open unit disk of the complex plane (i.e. $x \in C|x|<1$) by:

$$
f(x)=x^{1 / 24} \prod_{1}^{\infty}\left(1-x^{n}\right)
$$

[^0]
[^0]: Received by the editor on September 27, 1983 and in revised form on August 1, 1985.

