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LOCAL FACTORS OF FINITELY GENERATED WITT RINGS 

ROBERT FITZGERALD AND JOSEPH YUCAS 

ABSTRACT. The Witt rings considered here are the abstract Witt 
rings in the sense of Marshall [3]. A local Witt ring is one with a 
unique non-trivial 2-fold Pfister form. Our main result gives neces
sary and sufficient conditions for a finitely generated Witt ring to 
be a product (in the category of Witt rings) of two Witt rings, one of 
which is local. The basic motivation is to develop a tool for the 
study of whether every finitely generated Witt ring is of elementary 
type (that is, can be built from local Witt rings Z/4Z and Z/2Z 
by a succession of products and group ring extensions), cf. [3; 
problem 4, p. 123]. 

1. Introduction. R will always denote a non-degenerate finitely generated 
Witt ring and G will be the multiplicative subgroup of one-dimensional 
forms in R. The category of Witt rings is equivalent to the category of 
quaternionic structures and also to that of the quaternionic schemes 
defined in [1]. We let q denote the quaternionic mapping associated with 
R. For aeG, Z)<1, a} = {be G\q(b, -a) = 0} is the value set of the 
form <1, a}', i(a) will denote the index of Z)<1, a} in G. For a subset K 
of G, we let Q(K) = {q(k, x) \ k e K, x e G}. If K = {k}, we write Q(k) 
for Q(K). We will be mainly concerned with the existence of elements 
a e G such that i(a) — 2, equivalently, such that \Q( — a)\ = 2. 

For Witt rings i?x and R2 we let Rx x w R2 denote the product of-Ri 
and R2 in the category of Witt rings. We say Rx is a local factor of R if 
R = Ri x w R2 with Rt a local Witt ring. C2 denotes the group of order 2 
and R[C2] denotes the group ring of C2 with coefficients in R. Details on 
products and group rings of Witt rings may be found in [3]. 

For a e G, we let M(a) = {me G\i(m) = 2, i( — am) = 2 and Z><1, m) 
# Z)<l,fl>} U {a}y and we let H(a) = f]mŒM(a)

 D0> ™>- W e saY a i s a 

local element if i(a) = 2 and p 4 Q(H(a))9 where p is the unique non-
trivial element in Q(-a). The main goal of this paper is to prove the 
following 

THEOREM 1.1. Let R be a finitely generated non-degenerate Witt ring. 
R has a local factor if and only if R has a local element. 

We take a moment here to motivate our definition of local element. 
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