ON NEIGHBOURHOODS OF UNIVALENT CONVEX FUNCTIONS

RICHARD FOURNIER

Introduction. Let A denote the class of analytic functions f in the unit disk $E = \{z \mid |z| < 1\}$ with f(0) = f'(0) - 1 = 0. For f(z) = z + z $\sum_{k=2}^{\infty} a_k z^k$ in A and $\delta \ge 0$ Ruscheweyh has defined the δ -neighbourhood $N_{\delta}(f)$ as follows:

$$N_{\delta}(f) = \{ g \in A \mid g(z) = z + \sum_{k=2}^{\infty} b_k z^k \text{ and } \sum_{k=2}^{\infty} k |a_k - b_k| \leq \delta \}.$$

He has shown in [3], among other results, that if $f(z) = z + \sum_{k=n+1}^{\infty} z^{k}$ $a_k z^k \in C$, then

(1)
$$N_{d_n}(f) \subset S^* \text{ if } d_n = 2^{-2/n}$$

where $C(S^*)$ denotes the class of normalized convex (starlike) univalent functions in A. Ruscheweyh also asked in [3] if results analogous to (1) would hold if the class C were replaced by some of its subclasses.

Let t > 1/2. We consider the following subclasses of A:

$$(S^*)_t = \{ f \in A \mid \left| \frac{zf'(z)}{f(z)} - t \right| < t, \ z \in E \}$$

and

$$(C)_t = \{ f \in A \mid \left| \frac{zf''(z)}{f'(z)} + 1 - t \right| < t, z \in E \}.$$

It is clear that $(S^*)_t \subset S^*$ and $(C)_t \subset C$. The classes $(S^*)_t$ and $(C)_t$ have been studied by several authors (see for example [4], [5], [6]). We prove

THEOREM 1. Let $t \ge 1$ and $f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k \in (C)_t$. Then $N_{\delta_n}(f) \subset$ $(S^*)_t$ if $\delta_n = (2 - 1/t)^{-(1/n)(2-1/t)/(1-1/t)}$. The value given to δ_n is the best possible.

THEOREM 2. Let $1/2 < t \leq 2$ and $f(z) = z + \sum_{k=2}^{\infty} a_k z^k \in (C)_t$. Then $N_{\delta}(f) \subset (S^*)_t \text{ if } \delta = \inf_{z \in E} |t(f(z)/z)| - |f'(z) - t(f(z)/z)|.$

THEOREM 3. Let $1/2 < t \leq 1$ and $f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k \in (C)_t$. Then

Received by the edictor on November 13, 1984.

Copyright © 1986 Rocky Mountain Mathematics Consortium