HYPERBOLIC OPERATORS IN SPACES OF GENERALIZED DISTRIBUTIONS

SALEH ABDULLAH

Hyperbolic operators were investigated by L. Ehrenpreis [4] in the space of Schwartz distributions and by C. C. Chou [3] in the spaces of Roumieu ultradistributions. In this paper we study hyperbolic operators in spaces of Beurling generalized distributions. (See [1] and [2]).

Let D', E', D'_{ω} , E'_{ω} be the spaces of distribution, distributions with compact support, generalized distributions and generalized distributions with compact support in \mathbb{R}^n , respectively.

DEFINITION. The convolution operator S, $S \in E'_{\omega}$, is said to be ω -hyperbolic with respect to t > 0 (resp. t < 0) if there exists a fundamental solution E^+ (resp. E^-), E^+ ; $E^- \in D'_{\omega}$, so that supp $E^+ \subset \{(x, t) \in \mathbf{R}^n \times \mathbf{R}: t \ge -b_0 + b_1|x|\}$ for some b_0 , $b_1 > 0$ (resp. supp $E^- \subset \{(x, t) \in \mathbf{R}^n \times \mathbf{R}: t \le b_0 - b_1|x|\}$ for some b_0 , $b_1 > 0$).

An operator is said to be ω -hyperbolic if it is ω -hyperbolic with respect to t > 0 and t < 0. This definition coincides with the definition of hyperbolicity introduced by Ehrenpreis [4, Theorem 2] for Schwartz distributions.

For the notation and the properties of generalized distributions we refer to [2]. Let $\omega \in \mathcal{M}_c$ (see [2, Definition 1.3.23]). Using Proposition 1.2.1 of [2] we could extend ω to \mathbb{C}^n without losing any of its original properties; we will assume that ω is the extended function. We use the estimate

(1)
$$\omega(\xi) = o(|\xi|\log|\xi|), \text{ as } |\xi| \to \infty,$$

from which it follows that

(2)
$$\omega(\xi) \le M(1 + |\xi|),$$

for some constant M.

Following Ehrenpreis we prove the following theorem which characterizes ω -hyperbolic operators. The theorem and its proof will be given in the case of ω -hyperbolicity with respect to t > 0, the other case could be proved similarly.