INDECOMPOSABLE MODULES CONSTRUCTED FROM LIOUVILLE NUMBERS.

FRANK OKOH

ABSTRACT. The submodules of the polynomial Kronecker module are investigated. A pair of vector spaces (V, W) over an algebraically closed field K is called a Kronecker module if there is a K - bilinear map form $K^2 \times V$ to W. Every module over $K[\xi]$ - the polynomial ring in one variable over K may be viewed as a Kronecker module. The polynomial Kronecker module P, is $K[\xi]$ so viewed. Every infinite-dimensional submodule of P of finite rank has a unique infinite-dimensional indecomposable direct summand. So attention is focussed on indecomposable submodules. In that direction the main result is: For each positive integer n > 1, there is a family $\{V_s: s \in S\}$, Card $S = 2^{\aleph_0}$, of indecomposable submodules of P of rank n with the following properties:

- (a) Hom $(V_{s_1}, V_{s_2}) = 0$ if $s_1 \neq s_2$;
- (b) End $(V_s) = K$ for every s in S;
- (c) dim Ext $(V_{s_1}, V_{s_2}) \ge 2^{\aleph_0}$ for any s_1, s_2 in S.

This result is proved by constructing extensions of finitedimensional modules by P using Liouville numbers. Each extension, V, is shown to share with P a common submodule which reflects properties of V. A consequence of this is that, for each positive integer n > 1, P contains a nonterminating descending chain of nonisomorphic indecomposable submodules of rank n.

1. Completely decomposable submodules of P. Throughout the paper K is a fixed algebraically closed field and (a, b) is a fixed basis of the twodimensional K-vector space K^2 . Since the map from $K^2 \times V$ to W is bililinear it is enough to specify it on (a, b) and a basis of V. In $P = (K[\xi], K[\xi])$ the bilinear map is given by af = f, $bf = \xi f$ for all polynomials f.

Each $e \in K^2$ gives rise to a linear transformation $T_e: V \to W$ defined by $T_e(v) = ev$, the image of (e, v) under the bilinear map from $K^2 \times V$ to W. If T_e is one-to-one for every nonzero e in K^2 , V is said to be torsion-free. So P is torsion-free. Observe that P is an ascending union, $\bigcup_{k=1}^{\infty} V_k$, of finite-dimensional submodules where $V_1 = (0, [1])$; and, for $k \ge 2$,

(1)
$$V_k = [1, \xi, \ldots, \xi^{k-2}], W_k = [1, \ldots, \xi^{k-2}, \xi^{k-1}].$$

Received by the editors on August 8, 1983, and in revised form on August 20, 1984.

Copyright © 1986 Rocky Mountain Mathematics Consortium