INDECOMPOSABLE MODULES CONSTRUCTED FROM LIOUVILLE NUMBERS.

FRANK OKOH

Abstract

The submodules of the polynomial Kronecker module are investigated. A pair of vector spaces (V, W) over an algebraically closed field K is called a Kronecker module if there is a K - bilinear map form $K^{2} \times V$ to W. Every module over $K[\xi]$ - the polynomial ring in one variable over K may be viewed as a Kronecker module. The polynomial Kronecker module \mathbf{P}, is $K[\xi]$ so viewed. Every infinite-dimensional submodule of \mathbf{P} of finite rank has a unique infinite-dimensional indecomposable direct summand. So attention is focussed on indecomposable submodules. In that direction the main result is: For each positive integer $n>1$, there is a family $\left\{V_{s}: s \in S\right.$ \}, Card $S=2^{\mathrm{N}_{0}}$, of indecomposable submodules of \mathbf{P} of rank n with the following properties:

(a) $\operatorname{Hom}\left(V_{s_{1}}, V_{s_{2}}\right)=0$ if $s_{1} \neq s_{2}$;
(b) End $\left(V_{s}\right)=K$ for every s in S;
(c) $\operatorname{dim} \operatorname{Ext}\left(V_{s_{1}}, V_{s_{2}}\right) \geqq 2^{\mathrm{N}_{0}}$ for any s_{1}, s_{2} in S .

This result is proved by constructing extensions of finitedimensional modules by \mathbf{P} using Liouville numbers. Each extension, \mathbf{V}, is shown to share with \mathbf{P} a common submodule which reflects properties of \mathbf{V}. A consequence of this is that, for each positive integer $n>1, \mathbf{P}$ contains a nonterminating descending chain of nonisomorphic indecomposable submodules of rank n.

1. Completely decomposable submodules of \mathbf{P}. Throughout the paper K is a fixed algebraically closed field and (a, b) is a fixed basis of the twodimensional K-vector space K^{2}. Since the map from $K^{2} \times V$ to W is bililinear it is enough to specify it on (a, b) and a basis of V. In $P=(K[\xi]$, $K[\xi]$) the bilinear map is given by $a f=f, b f=\xi f$ for all polynomials f.

Each $e \in K^{2}$ gives rise to a linear transformation $T_{e}: V \rightarrow W$ defined by $T_{e}(v)=e v$, the image of (e, v) under the bilinear map from $K^{2} \times V$ to W. If T_{e} is one-to-one for every nonzero e in K^{2}, \mathbf{V} is said to be torsionfree. So P is torsion-free. Observe that P is an ascending union, $\bigcup_{k=1}^{\infty} \mathbf{V}_{k}$, of finite-dimensional submodules where $\mathbf{V}_{1}=(0,[1])$; and, for $k \geqq 2$,

$$
\begin{equation*}
V_{k}=\left[1, \xi, \ldots, \xi^{k-2}\right], W_{k}=\left[1, \ldots, \xi^{k-2}, \xi^{k-1}\right] \tag{1}
\end{equation*}
$$

[^0]
[^0]: Received by the editors on August 8, 1983, and in revised form on August 20, 1984.
 Copyright © 1986 Rocky Mountain Mathematics Consortium

