ANOTHER FAMILY OF q-LAGRANGE INVERSION FORMULAS

IRA GESSEL AND DENNIS STANTON

Abstract

A q-analog of Lagrange inversion is stated for (x / $\left.\left(1-x^{r}\right)^{b}\right)$. Applications to basic hypergeometric series, identities of the Rogers-Ramanujan type, and orthogonal polynomials are given.

1. Introduction. The generalized Lagrange inversion problem is: given

$$
\begin{equation*}
G_{k}(x)=\sum_{n=k}^{\infty} B_{n k} x^{n}, k=0,1, \ldots \tag{1.1}
\end{equation*}
$$

for some lower triangular non-singular matrix $B_{n k}$, and a formal power series

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} f_{n} x^{n} \tag{1.2}
\end{equation*}
$$

find constants a_{k} such that

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty} a_{k} G_{k}(x) \tag{1.3}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
f_{n}=\sum_{k=0}^{n} B_{n k} a_{k} \tag{1.4}
\end{equation*}
$$

Thus to find a_{k} it is sufficient to find the inverse matrix $B_{k l}^{-1}$:

$$
\begin{equation*}
a_{k}=\sum_{l=0}^{k} B_{k \prime}^{-1} f_{l} \tag{1.5}
\end{equation*}
$$

The usual Lagrange inversion formula takes $G_{k}(x)=y^{k}$, where $y(x)$ is a formal power series in x such that $y(0)=0$ and $y^{\prime}(0) \neq 0$.

In a recent paper [10] we gave a q-analog of $B_{n k}, B_{k /}^{-1}$, and $G_{k}(x)$ for $G_{k}(x)=x^{k} /(1-x)^{a+(b+1) k}$. In this paper we similarly find a q-Lagrange inversion formula for a q-analog of $G_{k}(x)=x^{k} /\left(1-x^{r}\right)^{a+(b+1) k}$ for $r=$ $1,2, \cdots$ Our main theorem is stated as Theorem 2.3. Just as in [10],

[^0]
[^0]: * This work was partially supported by NSF grants MCS 8105188 and MCS 8300872.

 Received by the editors on September 20, 1984
 Copyright © 1986 Rocky Mountain Mathematics Consortium

