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FUNCTIONS DEFINED BY CONTINUED FRACTIONS
MEROMORPHIC CONTINUATION

LISA JACOBSEN

1. Introduction. A continued fraction
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where a,, b,€C, a, # 0 for all n, is an infinite process resembling a
series in many ways. Corresponding to the partial sums of a series, we
have the approximants of K (a,/b,),
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(Here K9_,(a,/b,) = 0.) Further, we say that K(a,/b,) converges to a
value f, or that K(a,/b,) = f, if lim,_... f, exists and is equal to f. (We permit
convergence to 00.)

Still in analogy with series, the elements a, and b, may be functions of
a complex variable z. K(a,(z)/b,(z)) then defines a function of z in the
subset £ = C where K(a,(2)/b,(z)) converges. (Another way of defining
functions by continued fractions, K(a,(z)/b,(z)), is by correspondence
[3, §5.1]. In this paper, though, we shall use f(z) =lim,_,.. f,(z) pointwise,
for all z such that this limit exists.)

Finally, we also have modified approximants f,* of K(a,/b,). They arise
if we replace the nth tail

K _Q’L = n+1 ,a”__rz_
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of K(a,/b,), not by 0 as in the ordinary approximants (1.2), but by a
modifying factor w,. Thatis, f¢* = wyand
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