FUNCTIONS DEFINED BY CONTINUED FRACTIONS MEROMORPHIC CONTINUATION

LISA JACOBSEN

1. Introduction. A continued fraction

(1.1)
$$K\left(\frac{a_{n}}{b_{n}}\right) = \frac{a_{1}}{b_{1}} + \frac{a_{2}}{b_{2}} + \frac{a_{3}}{b_{3}} + \dots = \frac{a_{1}}{b_{1} + \frac{a_{2}}{b_{2}}}$$
$$b_{1} + \frac{a_{2}}{b_{2}} + \frac{a_{3}}{b_{3}} + \frac{a_{4}}{b_{4}} + \dots$$

where a_n , $b_n \in \mathbb{C}$, $a_n \neq 0$ for all *n*, is an infinite process resembling a series in many ways. Corresponding to the partial sums of a series, we have the approximants of $K(a_n/b_n)$,

(1.2)
$$f_n = \prod_{m=1}^n \left(\frac{a_m}{b_m} \right) = \frac{a_1}{b_1} + \frac{a_2}{b_2} + \dots + \frac{a_n}{b_n}, \quad \text{for } n \ge 0.$$

(Here $K_{m=1}^{0}(a_m/b_m) = 0$.) Further, we say that $K(a_n/b_n)$ converges to a value f, or that $K(a_n/b_n) = f$, if $\lim_{n \to \infty} f_n$ exists and is equal to f. (We permit convergence to ∞ .)

Still in analogy with series, the elements a_n and b_n may be functions of a complex variable z. $K(a_n(z)/b_n(z))$ then defines a function of z in the subset $E \subseteq \mathbb{C}$ where $K(a_n(z)/b_n(z))$ converges. (Another way of defining functions by continued fractions, $K(a_n(z)/b_n(z))$, is by correspondence [3, §5.1]. In this paper, though, we shall use $f(z) = \lim_{n \to \infty} f_n(z)$ pointwise, for all z such that this limit exists.)

Finally, we also have modified approximants f_n^* of $K(a_n/b_n)$. They arise if we replace the n^{th} tail

(1.3)
$$\underset{m=n+1}{\overset{\infty}{K}} \left(\frac{a_m}{b_m} \right) = \frac{a_{n+1}}{b_{n+1}} + \frac{a_{n+2}}{b_{n+2}} + \cdots$$

of $K(a_n/b_n)$, not by 0 as in the ordinary approximants (1.2), but by a modifying factor w_n . That is, $f_0^* = w_0$ and

Received by the editors on March 16, 1983.

Copyright © 1985 Rocky Mountain Mathematics Consortium