A NOTE ON FIXED-POINT CONTINUED FRACTIONS AND AITKEN'S ⊿²-METHOD

JOHN GILL

ABSTRACT. Limit periodic continued fractions can be accelerated, and, in some instances, analytically extended by the use of certain modifying factors. This procedure is actually Aitken's \varDelta^2 -method when applied to equivalent continued fractions/power series. Both acceleration and continuation results are given.

The continued fraction

(1)
$$\frac{a_1}{b_1} + \frac{a_2}{b_2} + \cdots$$
, with complex $\{a_n\}$ and $\{b_n\}$,

is called limit periodic if $a_n \to a$ and $b_n \to b$.

In accordance with the following procedure, (1) may be conceptualized as a composition of linear fractional transformations:

Let $t_n(w) = a_n/(b_n + w)$ for n = 1, 2, ..., and set $T_1(w) = t_1(w)$, $T_n(w) = T_{n-1}(t_n(w))$ for n = 2, 3, ... Then $a_1/b_1 + \cdots + a_n/(b_n + w)$ $= T_n(w)$, and, in particular, the *n*th approximant of (1) equals $T_n(0)$.

It is usually the case that each t_n has two distinct fixed points, α_n and β_n . When $|\alpha_n| < |\beta_n|$, α_n is called the attractive fixed point and β_n , the repulsive fixed point of t_n . If we assume (1) is limit periodic, then ordinarily $t_n(w) \to t(w) = a/(b + z)$ with $\alpha_n \to \alpha$, $\beta_n \to \beta$. Each t_n can be written $t_n(w) = \alpha_n \beta_n/[(\alpha_n + \beta_n) - w]$, so that (1) can be recast in fixed-point form

(2)
$$\frac{\alpha_1\beta_1}{\alpha_1+\beta_1}-\frac{\alpha_2\beta_2}{\alpha_2+\beta_2}-\cdots$$

Over the last ten years several papers have appeared describing and investigating a simple modification of (1) that frequently accelerates convergence and may analytically continue the function represented by (1) (if $a_n = a_n(z)$, $b_n = b_n(z)$) into a larger domain. See, e.g., [2], [3], [7], [8]. The modification requires the use of $T_n(\mu_n)$ in lieu of $T_n(0)$. μ_n customarily takes on fixed point values α , β , α_{n+1} or β_{n+1} . Motivation for this technique comes from the study of infinite iterations of a single linear

Received by the editors on May 14, 1983, and in revised form on October 10, 1983. Copyright © 1984 Rocky Mountain Mathematics Consortium