A CHARACTERIZATION OF ORIENTED GRASSMANN MANIFOLDS

D. E. BLAIR AND A. J. LEDGER

Introduction. Let $G_{p,q}$ denote the oriented Grassmann manifold of pplanes in \mathbb{R}^{p+q} . Our purpose is to give a characterization of $G_{p,q}$ and its non-compact dual $G_{p,q}^*$ in terms of a parallel tensor field T satisfying certain algebraic conditions and its behaviour on geodesic spheres. When q = 1 our result contains that of L. Vanhecke and T. J. Willmore on spaces of constant curvature ([5]. [2]). For q = 2, a different characterization has been obtained by B. J. Papantoniou using the Hermitian structure which exists for that case [4].

In the course of our work we give (Proposition 3) an algebraic characterization of the tensor T on a vector space V^{pq} . Although every Riemannian manifold trivially carries a parallel tensor field satisfying the given conditions, namely T(X, Y, Z) = g(Y, Z)X, for $p, q \ge 2$, T plays a significant role in the geometry of the Grassmann manifolds, somewhat analogous to the underlying almost complex structure on a Kähler manifold. In [5] Vanhecke and Willmore have also characterized the complex space forms in terms of their Kähler structures and the shape of their geodesic spheres. They have similarly characterized the remaining rank 1 symmetric spaces.

Some Properties of $G_{p,q}$. We consider $G_{p,q}$ as the Riemannian symmetric space $SO(p + q)/(SO(p) \times SO(q))$. Then following Kobayashi and Nomizu [3 pp. 271-273], for example, we may identify the tangent space at a point $m \in G_{p,q}$ with the vector space of real $p \times q$ matrices. Moreover the inner product

(1)
$$g(X, X) = \operatorname{tr} X X^{t}$$

at m gives rise to an invariant metric g on $G_{p,q}$ with curvature tensor R at m given by

(2)
$$R(X, Y)Z = XY^{t}Z + ZY^{t}X - ZX^{t}Y - YX^{t}Z.$$

Similarly for the non-compact dual $G_{p,q}^*$ of $G_{p,q}$ the curvature at a point is given by the negative of this expression. Any other invariant metric

Copyright © 1984 Rocky Mountain Mathematics Consortium

Received by the editors on March 3, 1983.