ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF AN nTH ORDER DIFFERENTIAL EQUATION

WILLIAM F. TRENCH

In this paper we give conditions which imply that the equation

(1)
$$u^{(n)} + f(t, u) = 0$$

has a solution which behaves in a precisely specified way like a given polynomial of degree $\langle n \text{ as } t \to \infty$. We do not make the often imposed assumptions that f is continuous on $(0, \infty) \times (-\infty, \infty)$, or that it is majorized by a function which is nondecreasing in |u|. Moreover, our integral smallness conditions on f permit some of the improper integrals in question to converge conditionally.

Throughout the paper we write $f(t) = O(\phi(t))$ to indicate that $\overline{\lim_{t\to\infty}}|f(t)/\phi(t)| < \infty$, and $f(t) = o(\phi(t))$ to indicate that $\lim_{t\to\infty} f(t)/\phi(t) = 0$.

The following is our main theorem.

THEOREM 1. Suppose k is an integer in $\{0, 1, ..., n-1\}$ and ϕ is positive, continuous, and nonincreasing on $[\overline{T}, \infty)$ for some $\overline{T} \ge 0$; moreover, if $k \ne 0$, suppose there is a number γ such that

(2)
$$\gamma < 1$$
 and $t^{\gamma}\phi(t)$ is nondecreasing on $[\overline{T}, \infty)$.

Let p be a given polynomial of degree < n, and suppose there are constants M > 0 and $T_0 \ge \overline{T}$ such that f is continuous on the set

(3)
$$Q = \{(t, u) | t \ge T_0, |u - p(t)| \le M\phi(t)t^k\},\$$

and

(4)
$$|f(t, u_1) - f(t, u_2)| \leq g(t)|u_1 - u_2|$$
 if $(t, u_i) \in \Omega$, $i = 1, 2,$

where $g \in C[T_0, \infty)$,

(5)
$$\int^{\infty} s^{n-1} g(s) \phi(s) ds < \infty,$$

and

AMS(MOS) Classification: 34E99, 34C10.

Received by the editors on July 20, 1982, and in revised form on January 30, 1983.