CAMPBELL'S CONJECTURE ON A MAJORIZATION-SUBORDINATION RESULT FOR CONVEX FUNCTIONS

ROGER W. BARNARD AND CHARLES N. KELLOGG

Let S denote the set of all normalized analytic univalent functions f, $f(z) = z + \cdots$, in the open unit disc U. Let f, F, and w be analytic in |z| < r. We say that f is majorized by F, $f \ll F$, in |z| < r, if $|f(z)| \le |F(z)|$ in |z| < r. We say that f is subordinate to F, $f \prec F$, in |z| < r if f(z) = F(w(z))where $|w(z)| \le |z|$ in |z| < r.

Majorization-subordination theory begins with Biernacki who showed in 1936 that if $f'(0) \ge 0$ and $f \prec F(F \in S)$, in U, then $f \ll F$ in |z| < 1/4. In the succeeding years Goluzin, Tao Shah, Lewandowski and MacGregor examined various related problems (for greater detail see [1]).

In 1951 Goluzin showed that if $f'(0) \ge 0$ and $f \prec F(F \in S)$ then $f' \ll F'$ in |z| < 0.12. He conjectured that majorization would always occur for $|z| < 3 - \sqrt{8}$ and this was proved by Tao Shah in 1958.

In a series of papers [1, 2, 3], D. Campbell extended a number of the results to the class \mathscr{U}_{α} of all normalized locally univalent $(f'(z) \neq 0)$ analytic functions in U with order $\leq \alpha$ where $\mathscr{U}_1 = K$ is the class of convex functions in S. In particular in [3] he showed that if $f'(0) \geq 0$ and $f < F(F \in \mathscr{U}_{\alpha})$ then $f' \ll F'$ in $|z| < \alpha + 1 - (\alpha^2 + 2\alpha)^{1/2}$ for $1.65 \leq \alpha < \infty$ where $\alpha = 2$ yields $3 - \sqrt{8}$. Note that $\alpha = 1$ yields $2 - \sqrt{3}$, the radius of convexity for S. Campbell's proof breaks down for $1 \leq \alpha < 1.65$ because of two different bounds being used for the Schwarz function with different ranges of α . Nevertheless, he conjectured that the result is true for all $\alpha \geq 1$.

In this paper we combine a subordination result of Ruscheweyh's, some variational techniques and some tedious computations to verify the conjecture for $\alpha = 1$, i.e., we show that if $f'(0) \ge 0$ and $f < F(F \in K)$ in U then $f' \ll F'$ for $|z| \le 2 - \sqrt{3}$. We note that our method of proof relies on the convexity of F in a number of places so that it is unlikely that it would extend to larger α 's.

Received by the editors on October 26, 1978 and in revised form on December 2, 1982.